PHYSICS 4E PROF. HIRSCH

QUIZ 2

Formulas:

Relativistic energy - momentum relation $E = \sqrt{m^2 c^4 + p^2 c^2}$; $c = 3 \times 10^8 m/s$ Electron rest mass : $m_{\rm e} = 0.511 \, MeV/c^2$; Proton : $m_p = 938.26 \, MeV/c^2$; Neutron : $m_{\rm n} = 939.55 \, MeV/c^2$ Planck's law: $u(\lambda) = n(\lambda)\bar{E}(\lambda)$; $n(\lambda) = \frac{8\pi}{\lambda^4}$; $\bar{E}(\lambda) = \frac{hc}{\lambda} \frac{1}{e^{hc/\lambda k_B T} - 1}$ Energy in a mode/oscillator: $E_f = nhf$; probability $P(E) \propto e^{-E/k_B T}$ Stefan's law : $R = \sigma T^4$; $\sigma = 5.67 \times 10^{-8} W / m^2 K^4$; R = cU/4, $U = \int_0^\infty u(\lambda) d\lambda$ Wien's displacement law : $\lambda_m T = \frac{hc}{4.96k_m}$ E = pc; E = hf; $p = h/\lambda$; $f = c/\lambda$ Photons : Photoelectric effect: $eV_0 = (\frac{1}{2}mv^2)_{max} = hf - \phi$, $\phi = \text{work function}$ $\lambda' - \lambda = \frac{h}{mc}(1 - \cos\theta)$ Compton scattering : Rutherford scattering: $b = \frac{kq_{\alpha}Q}{m_{\nu}v^2}\cot(\theta/2)$; $\Delta N \propto \frac{1}{\sin^4(\theta/2)}$ Constants: $hc = 12,400 \ eVA$; $\hbar c = 1,973 \ eVA$; $k_B = 1/11,600 \ eV/K$; $ke^2 = 14.4 \ eVA$ Electrostatics: $F = \frac{kq_1q_2}{r^2}$ (force); $U = q_0V$ (potential energy); $V = \frac{kq}{r}$ (potential) Hydrogen spectrum: $\frac{1}{\lambda} = R(\frac{1}{m^2} - \frac{1}{n^2})$; $R = 1.097 \times 10^7 \ m^{-1} = \frac{1}{911.34}$ Bohr atom: $E_n = -\frac{ke^2Z}{2r} = -\frac{Z^2E_0}{n^2}$; $E_0 = \frac{ke^2}{2a_0} = \frac{mk^2e^4}{2\hbar^2} = 13.6eV$; $E_n = E_{kin} + E_{pot}, E_{kin} = -E_{pot}/2 = -E_n$ $hf = E_i - E_f$; $r_n = r_0 n^2$; $r_0 = \frac{a_0}{Z}$; $a_0 = \frac{\hbar^2}{mka^2} = 0.529A$; $L = mvr = n\hbar$ angular momentum X - ray spectra: $f^{1/2} = A_{r}(Z-b)$; K: b = 1, L: b = 7.4de Broglie: $\lambda = \frac{h}{p}$; $f = \frac{E}{h}$; $\omega = 2\pi f$; $k = \frac{2\pi}{\lambda}$; $E = \hbar\omega$; $p = \hbar k$; $E = \frac{p^2}{2m}$ group and phase velocity : $v_g = \frac{d\omega}{dk}$; $v_p = \frac{\omega}{k}$; Heisenberg : $\Delta x \Delta p \sim \hbar$; $\Delta t \Delta E \sim \hbar$ $\Psi(x,t) = |\Psi(x,t)| e^{i\theta(x,t)} ; \qquad P(x,t) dx = |\Psi(x,t)|^2 dx = \text{probability}$ Wave function Schrodinger equation: $-\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial r^2} + V(x)\Psi(x,t) = i\hbar \frac{\partial\Psi}{\partial t}$; $\Psi(x,t) = \psi(x)e^{-i\frac{\mu}{\hbar}t}$ Time – independent Schrödinger equation: $-\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2} + V(x)\psi(x) = E\psi(x); \quad \int_{\infty}^{\infty} dx \ \psi^*\psi = 1$ ∞ square well: $\psi_n(x) = \sqrt{\frac{2}{I}\sin(\frac{n\pi x}{I})}$; $E_n = \frac{\pi^2 \hbar^2 n^2}{2mI^2}$

Justify all your answers to all problems

Problem 1 (10 pts)

PHYSICS 4E

PROF. HIRSCH

An electron is described by the wavepacket

 $\psi(x,t) = \int dk e^{i(kx - \omega(k)t)} a(k)$

with a(k)=A for k in the interval (k_1,k_2) and a(k)=0 outside that interval. $k_1=99A^{-1}$,

 $k_2 = 101 A^{-1}$ and A is a constant.

(a) Find an expression for $\psi(x, t = 0)$. What is the most probable position for this electron at t=0?

QUIZ 2

(b) Estimate the uncertainty in the position of this electron at t=0, in A.

(c) Estimate the most probable position for this electron at t=1s.

(d) Estimate the group velocity of this electron, expressed as v/c.

Problem 2 (10 pts)

An electron is confined to move in a one-dimensional potential of the form

$$V(x) = V_0 \frac{x^2}{x_0^2}$$

where $V_0 = 5eV$ and $x_0 = 0.01$ A and x is the position coordinate.

(a) Assume this electron is known for certain to be within a distance of 0.01A from the origin (x=0). Give a rough estimate of (i) its potential energy and (ii) its kinetic energy, both in eV.

(b) Assume now the electron is in a state that minimizes its total energy (kinetic plus potential). Estimate the uncertainty in its position and its potential and kinetic energies, in eV.

<u>Hint:</u> Use Heisenberg's uncertainty principle. Use $\hbar^2/m_e = 7.62 \ eVA^2$

Problem 3 (10 pts)

(a) An electron is in the ground state of an infinite square well of length L. How much more likely is it to be found at the center of the well (x=L/2) than at x=L/4? (b) An electron in an infinite square well is in a state of energy 1000eV. Give a lower bound for the length of this well, in A. Can you also give an upper bound?

Justify all your answers to all problems