Formulas:

Relativistic energy - momentum relation $E=\sqrt{m^{2} c^{4}+p^{2} c^{2}} \quad ; \quad \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Electron rest mass : $m_{\mathrm{e}}=0.511 \mathrm{MeV} / \mathrm{c}^{2} ;$ Proton : $m_{p}=938.26 \mathrm{MeV} / c^{2} ;$ Neutron : $\mathrm{m}_{\mathrm{n}}=939.55 \mathrm{MeV} / \mathrm{c}^{2}$
Planck's law: $\quad u(\lambda)=n(\lambda) \bar{E}(\lambda) \quad ; \quad n(\lambda)=\frac{8 \pi}{\lambda^{4}} \quad ; \quad \bar{E}(\lambda)=\frac{h c}{\lambda} \frac{1}{e^{h c / \lambda k_{B} T}-1}$
Energy in a mode/oscillator: $E_{f}=n h f ;$ probability $P(E) \propto e^{-E / k_{B} T}$
Stefan's law : $R=\sigma T^{4} ; \sigma=5.67 \times 10^{-8} W / m^{2} K^{4} ; R=c U / 4, U=\int_{0}^{\infty} u(\lambda) d \lambda$
Wien's displacement law : $\lambda_{m} T=\frac{h c}{4.96 k_{B}}$
Photons: $E=p c ; E=h f ; \mathrm{p}=\mathrm{h} / \lambda ; \quad f=c / \lambda$
Photoelectric effect: $e V_{0}=\left(\frac{1}{2} m v^{2}\right)_{\max }=h f-\phi \quad, \quad \phi \equiv$ work function
Compton scattering: $\quad \lambda^{\prime}-\lambda=\frac{\mathrm{h}}{\mathrm{m}_{\mathrm{e}} c}(1-\cos \theta)$
Rutherford scattering: $\quad b=\frac{k q_{\alpha} Q}{m_{\alpha} \nu^{2}} \cot (\theta / 2) \quad ; \quad \Delta N \propto \frac{1}{\sin ^{4}(\theta / 2)}$
Constants: $h c=12,400 \mathrm{eVA} ; \hbar c=1,973 \mathrm{eVA} ; k_{B}=1 / 11,600 \mathrm{eV} / \mathrm{K} ; k e^{2}=14.4 \mathrm{eVA}$
Electrostatics : $F=\frac{k q_{1} q_{2}}{r^{2}}$ (force) ; $U=q_{0} V$ (potential energy) ; $V=\frac{k q}{r}$ (potential)

Hydrogen spectrum: $\frac{1}{\lambda}=R\left(\frac{1}{m^{2}}-\frac{1}{n^{2}}\right) \quad ; \quad R=1.097 \times 10^{7} m^{-1}=\frac{1}{911.3 A}$
Bohr atom : $E_{n}=-\frac{k e^{2} Z}{2 r_{n}}=-\frac{Z^{2} E_{0}}{n^{2}} ; E_{0}=\frac{k e^{2}}{2 a_{0}}=\frac{m k^{2} e^{4}}{2 \hbar^{2}}=13.6 e \mathrm{~V} ; E_{n}=E_{k i n}+E_{p o t}, E_{k i n}=-E_{p o t} / 2=-E_{n}$ $h f=E_{i}-E_{f} ; r_{n}=r_{0} n^{2} ; r_{0}=\frac{a_{0}}{Z} ; a_{0}=\frac{\hbar^{2}}{m k e^{2}}=0.529 A \quad ; \quad L=m v r=n \hbar \quad$ angular momentum X - ray spectra : $f^{1 / 2}=A_{n}(Z-b) ; \mathrm{K}: b=1, \mathrm{~L}: b=7.4$
de Broglie : $\lambda=\frac{h}{p} ; f=\frac{E}{h} ; \omega=2 \pi f ; k=\frac{2 \pi}{\lambda} ; \quad E=\hbar \omega ; p=\hbar k \quad ; \quad E=\frac{p^{2}}{2 m}$ group and phase velocity : $v_{g}=\frac{d \omega}{d k} ; v_{p}=\frac{\omega}{k} ;$ Heisenberg : $\Delta x \Delta p \sim \hbar ; \Delta t \Delta E \sim \hbar$
Wave function $\quad \Psi(x, t)=|\Psi(x, t)| \mathrm{e}^{\mathrm{i} \theta(x, t)} ; \quad P(x, t) d x=|\Psi(x, t)|^{2} d x=$ probability
Schrodinger equation: $-\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{\partial^{2} \Psi}{\partial x^{2}}+\mathrm{V}(\mathrm{x}) \Psi(\mathrm{x}, \mathrm{t})=\mathrm{i} \hbar \frac{\partial \Psi}{\partial t} \quad ; \quad \Psi(\mathrm{x}, \mathrm{t})=\psi(\mathrm{x}) \mathrm{e}^{-\mathrm{i} \frac{\mathrm{E}}{} \hbar^{t}}$
Time - independent Schrodinger equation: $-\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{\partial^{2} \psi}{\partial x^{2}}+\mathrm{V}(\mathrm{x}) \psi(\mathrm{x})=\mathrm{E} \psi(\mathrm{x}) ; \quad \int_{-\infty}^{\infty} d x \psi^{*} \psi=1$
∞ square well: $\psi_{\mathrm{n}}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right) ; E_{n}=\frac{\pi^{2} \hbar^{2} n^{2}}{2 m L^{2}}$

Justify all your answers to all problems

Problem 1 (10 pts)
An electron is described by the wavepacket
$\psi(x, t)=\int d k e^{i(k x-\omega(k) t)} a(k)$
with $a(k)=A$ for k in the interval $\left(k_{1}, k_{2}\right)$ and $a(k)=0$ outside that interval. $k_{1}=99 A^{-1}$,
$\mathrm{k}_{2}=101 \mathrm{~A}^{-1}$ and A is a constant.
(a) Find an expression for $\psi(x, t=0)$. What is the most probable position for this electron at $\mathrm{t}=0$?
(b) Estimate the uncertainty in the position of this electron at $\mathrm{t}=0$, in A .
(c) Estimate the most probable position for this electron at $\mathrm{t}=1 \mathrm{~s}$.
(d) Estimate the group velocity of this electron, expressed as v/c.

Problem 2 (10 pts)
An electron is confined to move in a one-dimensional potential of the form
$V(x)=V_{0} \frac{x^{2}}{x_{0}^{2}}$
where $\mathrm{V}_{0}=5 \mathrm{eV}$ and $\mathrm{x}_{0}=0.01 \mathrm{~A}$ and x is the position coordinate.
(a) Assume this electron is known for certain to be within a distance of 0.01 A from the origin ($\mathrm{x}=0$). Give a rough estimate of (i) its potential energy and (ii) its kinetic energy, both in eV .
(b) Assume now the electron is in a state that minimizes its total energy (kinetic plus potential). Estimate the uncertainty in its position and its potential and kinetic energies, in eV .

Problem 3 (10 pts)
(a) An electron is in the ground state of an infinite square well of length L. How much more likely is it to be found at the center of the well ($\mathrm{x}=\mathrm{L} / 2$) than at $\mathrm{x}=\mathrm{L} / 4$?
(b) An electron in an infinite square well is in a state of energy 1000 eV . Give a lower bound for the length of this well, in A. Can you also give an upper bound?

Justify all your answers to all problems

