Formulas:

Relativistic energy -momentum relation $\quad E=\sqrt{m^{2} c^{4}+p^{2} c^{2}} \quad ; \quad \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Electron rest mass : $m_{\mathrm{e}}=0.511 \mathrm{MeV} / c^{2} ;$ Proton : $m_{p}=938.26 \mathrm{MeV} / c^{2} ;$ Neutron : $\mathrm{m}_{\mathrm{n}}=939.55 \mathrm{MeV} / \mathrm{c}^{2}$
Planck's law : $\quad u(\lambda)=n(\lambda) \bar{E}(\lambda) \quad ; \quad n(\lambda)=\frac{8 \pi}{\lambda^{4}} \quad ; \quad \bar{E}(\lambda)=\frac{h c}{\lambda} \frac{1}{e^{h c / \lambda k_{B} T}-1}$
Energy in a mode/oscillator: $E_{f}=n h f ;$ probability $P(E) \propto e^{-E / k_{B} T}$
Stefan's law : $R=\sigma T^{4} ; \sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} K^{4} ; R=c U / 4, U=\int_{0}^{\infty} u(\lambda) d \lambda$
Wien's displacement law : $\lambda_{m} T=\frac{h c}{4.96 k_{B}}$
Photons : $E=p c \quad ; \quad E=h f ; \mathrm{p}=\mathrm{h} / \lambda ; \quad f=c / \lambda$
Photoelectric effect : $e V_{0}=\left(\frac{1}{2} m v^{2}\right)_{\max }=h f-\phi \quad, \quad \phi \equiv$ work function
Compton scattering: $\quad \lambda^{\prime}-\lambda=\frac{\mathrm{h}}{\mathrm{m}_{\mathrm{e}} c}(1-\cos \theta)$
Rutherford scattering: $\quad b=\frac{k q_{\alpha} Q}{m_{\alpha} v^{2}} \cot (\theta / 2) \quad ; \quad \Delta N \propto \frac{1}{\sin ^{4}(\theta / 2)}$
Constants: $h c=12,400 \mathrm{eVA} ; \quad k_{B}=1 / 11,600 \mathrm{eV} / \mathrm{K} ; k e^{2}=14.4 \mathrm{eVA}$
Electrostatics : $F=\frac{k q_{1} q_{2}}{r^{2}}$ (force) ; $U=q_{0} V$ (potential energy) ; $V=\frac{k q}{r} \quad$ (potential)
Hydrogen spectrum: $\frac{1}{\lambda}=R\left(\frac{1}{m^{2}}-\frac{1}{n^{2}}\right) \quad ; \quad R=1.097 \times 10^{7} m^{-1}=\frac{1}{911.3 A}$
Bohr atom: $E_{n}=-\frac{k e^{2} Z}{2 r_{n}}=-\frac{Z^{2} E_{0}}{n^{2}} ; E_{0}=\frac{k e^{2}}{2 a_{0}}=\frac{m k^{2} e^{4}}{2 \hbar^{2}}=13.6 \mathrm{eV} ; E_{n}=E_{\text {kin }}+E_{\text {pot }}, E_{\text {kin }}=-E_{p o t} / 2=-E_{n}$ $h f=E_{i}-E_{f} ; r_{n}=r_{0} n^{2} ; r_{0}=\frac{a_{0}}{Z} ; a_{0}=\frac{\hbar^{2}}{m k e^{2}}=0.529 A \quad ; \quad L=m v r=n \hbar$ angular momentum

Justify all your answers to all problems

Problem 1 (10 pts)
In a different universe, the energy of electromagnetic radiation is quantized according to the law

$$
E=n I f^{2}
$$

instead of Planck's law $E=n h f$. f is the frequency of the radiation, n is an integer, and I is the equivalent of Planck's constant h in that universe. The Boltzmann distribution, counting of modes, etc., are the same in that universe as in ours.
(a) The equivalent of Stefan's law in that universe is
$P=C T^{\alpha}$
where C and α are constants. Find α.
(b) The equivalent of Wien's displacement law in that universe is
$\lambda_{m} T^{\beta}=D$
where D and β are constants. Find β.
(c) What are the dimensions of the constant I, and what might it represent physically?

Problem 2 (10 pts)
In a Compton scattering experiment, incident photons have wavelength 1 A and scattered electrons have kinetic energy 493 eV .
(a) Find the wavelength of the scattered photons, in A.
(b) Find the angle θ at which the photons are scattered, in degrees.

Hint: use energy conservation.

Problem 3 (10 pts)
(a) The emission line spectrum emitted by a hydrogen-like ion extends down to wavelengths smaller than 15 A . Clearly, this is not hydrogen $(\mathrm{Z}=1)$. What is the minimum Z that this ion has to have?
(b) A hydrogen-like ion has the electron orbiting at speed faster than 0.1 c . What is the minimum Z that this ion has to have? (Hint: use angular momentum).
(c) A hydrogen-like ion has the electron in an orbit of radius 0.0529 A . Give two possible values for the Z of this ion.

Justify all your answers to all problems

