Weighted Averages

A: $x = x_4 \pm \sigma_4$ combining separate measurements: what is the best estimate for x? *B*: $x = x_B \pm \sigma_B$ $\operatorname{Prob}_{X}(x_{A}) \propto \frac{1}{\sigma_{A}} e^{-(x_{A}-X)^{2}/2\sigma_{A}^{2}}$ assume that measurements are governed by Gauss distribution with true value X $\operatorname{Prob}_{X}(x_{B}) \propto \frac{1}{\sigma_{E}} e^{-(x_{B}-X)^{2}/2\sigma_{B}^{2}}$ probability that A finds x_A $\operatorname{Prob}_X(x_A x_B) = \operatorname{Prob}_X(x_A) \cdot \operatorname{Prob}_X(x_B)$ \checkmark probability that A finds x_A and B finds x_B $\propto \frac{1}{\sigma_A \sigma_B} e^{-\chi^2/2}$ find maximum of probability principle of maximum likelihood $\chi^{2} = \left(\frac{x_{A} - X}{\sigma}\right)^{2} + \left(\frac{x_{B} - X}{\sigma}\right)^{2}$ the best estimate for *X* is that value for which $Prob_X(x_A, x_B)$ is maximum $\frac{d\chi^2}{dX} = 0 \implies -2\frac{x_A - X}{\sigma_A^2} - 2\frac{x_B - X}{\sigma_B^2} = 0$ chi squared – "sum of squares" (best estimate for X) = $\left(\frac{x_A}{\sigma_A^2} + \frac{x_B}{\sigma_B^2}\right) / \left(\frac{1}{\sigma_A^2} + \frac{1}{\sigma_B^2}\right)$ find minimum of χ^2 method of least squares $=\frac{w_A x_A + w_B x_B}{w_A + w_B} = x_{wav}$ weighted average $w_A = \frac{1}{\sigma_A^2}$ $w_B = \frac{1}{\sigma_-^2}$ weights

Weighted Averages

 $x_1, x_2, ..., x_N$ - measurements of a single quantity x with uncertainties $\sigma_1, \sigma_2, ..., \sigma_N$

$$x_{1} \pm \sigma_{1}, x_{2} \pm \sigma_{2}, ..., x_{N} \pm \sigma_{N}$$

$$x_{wav} = \frac{\sum w_{i} x_{i}}{\sum w_{i}}$$

$$w_{i} = \frac{1}{\sigma_{i}^{2}}$$

$$\sigma_{wav} = \frac{1}{\sqrt{\sum w_{i}}}$$

$$w_{i} = \frac{1}{\sqrt{\sum w_{i}}}$$

$$weights$$

$$weights$$

$$weights$$

$$weights$$

$$weights$$

$$weights$$

$$weights$$

Example Problem

Two students measure the radius of a planet and get final answers R_A =25,000±3,000 km and R_B =19,000±2,500 km.

The best estimate of the true radius of a planet is the weighted average. Find the best estimate of the true radius of a planet and the error in that estimate.

$$x_{wav} = \frac{w_A x_A + w_B x_B}{w_A + w_B} \qquad w_A = \frac{1}{\sigma_A^2} \qquad w_B = \frac{1}{\sigma_B^2} \qquad \sigma_{wav} = \frac{1}{\sqrt{w_A + w_B}}$$
$$R_{wav} = \frac{\frac{R_A}{\sigma_A^2} + \frac{R_B}{\sigma_B^2}}{\frac{1}{\sigma_A^2} + \frac{1}{\sigma_B^2}} = \frac{\frac{25,000}{3,000^2} + \frac{19,000}{2,500^2}}{\frac{1}{3,000^2} + \frac{1}{2,500^2}} = 21,459 km \rightarrow \underline{21,500 km}$$
$$\sigma_{wav} = \frac{1}{\sqrt{\frac{1}{\sigma_A^2} + \frac{1}{\sigma_B^2}}} = \frac{1}{\sqrt{\frac{1}{3,000^2} + \frac{1}{2,500^2}}} = 1,921 km \rightarrow \underline{1,900 km}$$
$$R_{wav} = 21,500 \pm 1,900 km$$

Least-Squares Fitting

consider two variables x and y that are connected by a linear relation

graphical method of finding the best straight line to fit a series of experimental points

$$\begin{array}{cccc} x_1, x_2, & \dots, & x_N \\ y_1, y_2, & \dots, & y_N \end{array} \longrightarrow \text{ find } A \text{ and } B \end{array}$$

analytical method of finding the best straight line to fit a series of experimental points is called <u>linear regression</u> or <u>the least-squares fit for a line</u>

Calculation of the Constants A and B

Uncertainties in y, A, and B

$\sigma_{y} = \sqrt{\frac{1}{N-2} \sum_{i=1}^{N} (y_{i} - A - Bx_{i})^{2}}$
$\sigma_A = \sigma_y \sqrt{\frac{\sum x^2}{\Delta}}$
$\sigma_{B} = \sigma_{y} \sqrt{\frac{N}{\Delta}}$

uncertainty in the measurement of y

uncertainties in the constants *A* and *B* given by error propagation in terms of uncertainties in y_1, \ldots, y_N

Example of Calculation of the Constants A and B

Covariance

$x = \overline{x} \pm \delta x \longrightarrow a(x, y) = \overline{a} + \delta a$	
$y = \overline{y} \pm \delta y \qquad \qquad \text{find } \overline{q} \text{ and } \delta q$	$\overline{\mathscr{G}} = \frac{1}{N} \sum_{i=1}^{N} \mathscr{B}_i$
N pairs of data $(X_1, y_1), \dots, (X_N, y_N)$	$= \frac{1}{N} \sum_{i=1}^{N} \left[g(\bar{x}, \bar{y}) + \frac{\partial g}{\partial x} (x_i - \bar{x}) + \frac{\partial g}{\partial y} (y_i - \bar{y}) \right]$
$X_1, \dots, X_N \longrightarrow X \text{ and } \mathcal{D}_X$ $Y_1, \dots, Y_N \longrightarrow \overline{Y} \text{ and } \mathcal{D}_Y$	$Z(x_i - \bar{x}) = 0 \implies \bar{g} = g(\bar{x}, \bar{g})$
$y_{3i} = g(x_i, y_i)$	$\overline{\sigma_{g}}^{2} = \frac{1}{N} \sum (g_{i} - \overline{g})^{2}$
$g_1, \ldots, g_N \longrightarrow \overline{g}$ and $\overline{\varsigma}_g$	$J = \Gamma \gamma$
$ = g_i \approx g(\overline{x}, \overline{y}) + \frac{\partial g}{\partial x} (x_i - \overline{x}) + \frac{\partial g}{\partial y} (y_i - \overline{y}) $	$= \frac{1}{N} \sum \left[\frac{\partial y}{\partial x} (x_i - \overline{x}) + \frac{\partial y}{\partial y} (y_i - y) \right]$
OX Of	$= \left(\frac{\partial g}{\partial x}\right)^2 \frac{1}{N} \sum (x_i - \bar{x})^2 + \left(\frac{\partial g}{\partial y}\right)^2 \frac{1}{N} \sum (y_i - \bar{y})^2$
	+ 2 $\frac{\partial g}{\partial x} \frac{\partial g}{\partial y} \frac{1}{N} \sum (x_i - \overline{x}) (y_i - \overline{y})$
σ_{q} for arbitrary σ_{x} and σ_{v}	0 x 0 y 10
σ_x and σ_y can be correlated \longrightarrow	$\sigma_{g}^{2} = \left(\frac{\partial g}{\partial x}\right)^{2} \sigma_{x}^{2} + \left(\frac{\partial g}{\partial y}\right)^{2} \sigma_{y}^{2} + 2 \frac{\partial g}{\partial x} \frac{\partial g}{\partial y} \sigma_{xy}$
<u>covariance</u> $\sigma_{xy} \longrightarrow$	$\sigma_{\mathbf{x}\mathbf{y}} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i - \overline{\mathbf{x}}) \cdot (\mathbf{y}_i - \overline{\mathbf{y}})$
when σ_x and σ_y are independent $\sigma_{xy} = 0$ —	$\longrightarrow \overline{\sigma_{g}^{2}} = \left(\frac{\partial g}{\partial x}\right)^{2} \overline{\sigma_{x}^{2}} + \left(\frac{\partial g}{\partial y}\right)^{2} \overline{\sigma_{y}^{2}}$

Coefficient of Linear Correlation

N pairs of values $(x_i, y_i), ..., (x_N, y_N)$ $y = A + B \times \longrightarrow \text{do } N \text{ pairs of } (x_i, y_i) \text{ satisfy a linear relation } ?$

$$\Gamma = \frac{\overline{\sigma}_{xy}}{\overline{\sigma}_{x} \cdot \overline{\sigma}_{y}}$$

$$\Gamma = \frac{\Sigma (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sqrt{\Sigma (x_{i} - \overline{x})^{2} \Sigma (y_{i} - \overline{y})^{2}}}$$

linear correlation coefficient or correlation coefficient

-1 ≤ r ≤ 1

Suppose
$$(X_i, y_i)$$
 all lie exactly
on the line $y = A + Bx$
 $y_i = A + B\overline{x}$
 $\overline{y} = A + B\overline{x}$
 $y_1 - \overline{y} = B(x_i - \overline{x})$
 $\Gamma = \frac{B\overline{Z}(x_i - \overline{x})^2}{\sqrt{\overline{Z}(x_i - \overline{x})^2} \cdot B^2 \overline{Z}(x_i - \overline{x})^2} = \frac{B}{|B|} = \pm 1$

Suppose, there is no relationship between x and y $\Sigma(x_i - \overline{x})(y_i - \overline{y}) \rightarrow 0$

 $\mathbf{r}=0$

if *r* is close to ± 1 when *x* and *y* are linearly correlated if *r* is close to 0 when there is no relationship between *x* and *y x* and *y* are uncorrelated

Quantitative Significance of r

~										
Student <i>i</i>	1	2	3	4	5	6	7	8	9	10
Homework x_i	90	60	45	100	15	23	52	30	71	88
Exam y_i	90	71	65	100	45	60	75	85	100	80

probability that N measurements of two uncorrelated variables x and y would produce $r \ge r_0$ — Table C

Table 9.4. The probability $Prob_N(|r| \ge r_0)$ that N measurements of two uncorrelated variables x and y would produce a correlation coefficient with $|r| \ge r_0$. Values given are percentage probabilities, and blanks indicate values less than 0.05%.

						ro					
N	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
3	100	94	87	81	74	67	59	51	41	29	0
6	100	85	70	56	43	31	21	12	6	1	0
10	100	78	58	40	25	14	7	2	0.5		0
20	100	67	40	20	8	2	0.5	0.1	\smile		0
50	100	49	16	3	0.4						0

correlation is "significant" if $Prob_N(|r| \ge r_0)$ is less than 5 % correlation is "highly significant" if $Prob_N(|r| \ge r_0)$ is less than 1 %

$$\sum (x_i - \overline{x}) (\overline{y}_i - \overline{\overline{y}})$$

$$\overline{\overline{y}} (\overline{x}_i - \overline{x})^2 \overline{\overline{z}} (\overline{y}_i - \overline{\overline{y}})^2$$

$$r = 0.8$$

$$N = 10$$

$$Prob_N (1r1 \ge r_0)$$

$$Prob_N (1r1 \ge r_0)$$

$$Prob_N (1r1 \ge 0.8)$$

$$= 0.5 \%$$

$$\downarrow$$
it is very unlikely that
x and y are uncorrelated

$$1$$

calculate correlation coefficient

r =

it is very likely that x and y are correlated

the correlation is highly significant

Example:

Calculate the covariance and the correlation coefficient r for the following six pairs of measurements of two sides x and y of a rectangle. Would you say these data show a significant linear correlation coefficient? Highly significant?

A B C D E F

$$x = 71 72 73 75 76 77 \text{ mm}$$
 y
 $y = 95 96 96 98 98 99 \text{ mm}$
 $\overline{x} = 74$
 $\overline{y} = 97$
covariance $\sigma_{xy} = \frac{1}{N} \sum (x_i - \overline{x})(y_i - \overline{y}) = \frac{1}{6} ((-3) \times (-2) + ... + 3 \times 2) = 3$
correlation coefficient $r = \frac{\sigma_{xy}}{\sigma_x \sigma_y} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}} = \frac{0.98}{-0.98}$
Table C $Prob_6(|r| \ge 0.98) \approx 0.2\%$ therefore, the correlation is both

significant and highly significant

The square-root rule for a counting experiment

for events which occur at random but with a definite average rate N occurrences in a time T the standard deviation is \sqrt{N}

(number of counts in time
$$T$$
) = $N \pm \sqrt{N}$
average number of counts in a time T uncertainty

(fractional uncertainty) =
$$\frac{\sqrt{N}}{N} = \frac{1}{\sqrt{N}}$$
 reduces with increasing N

Examples

Photoemission:

if average emission rate is 10⁶ photons/s, uncertainty is $\sqrt{10^6} = 10^3$ photons/s and expected number is $10^6 \pm 10^3$ photons/s

Rain droplets on a windshield: if average rate is 100 droplets/s, uncertainty is $\sqrt{100} = 10$ droplets/s and expected number is 100 ± 10 droplets/s fractional uncertainty $\frac{1}{\sqrt{N}} = \frac{1}{1000}$ $\frac{1}{\sqrt{N}} = \frac{1}{10}$

Chi Squared Test for a Distribution

Degrees of Freedom and Reduced Chi Squared

a better procedure is to compare χ^2 not with the number of bins *n* but instead with the number of degree of freedom *d*

- n is the number of bins
- c is the number of parameters that had to be calculated from the data to compute the expected numbers E_k
- c is called the number of constrains

$$d = n - c$$

d is <u>the number of degrees of freedom</u>

test for a Gauss
$$\rightarrow C = 3 \stackrel{N}{\leftarrow} X$$

distribution $G_{X, \mathfrak{S}}(X) \rightarrow C = 3 \stackrel{N}{\leftarrow} X$

(expected average value of
$$\chi^2$$
) = $d = n-c$
 $\tilde{\chi}^2 = \chi^2/d$ reduced chi squared
(expected average value of $\tilde{\chi}^2$) = 1

Probabilities of Chi Squared

quantitative measure of agreement between observed data and their expected distribution (expected average value of χ^2) = d = n-c $\widetilde{\chi}^2 = \chi^2/d$ (expected average value of $\widetilde{\chi}^2$) = 1 $\chi^2 = 1.80$ d=4-3=1 $\tilde{\chi}^2 = 1.80$ Prob $(\widehat{\chi}^2 \ge 1.80) \approx 18\%$ - Table D $\tilde{\chi}_{o}^{2}$ probability of obtaining
 4
 5
 6

 5
 3
 1

 2
 0.7
 0.2
 0.25 0.5 0.75 1.0 1.25 1.5 1.75 d a value of $\tilde{\chi}^2$ greater or 19 X 16 8 equal to $\tilde{\chi}_0^2$, assuming 2 0.7 11 3 0.7 0.2 _ the measurements are 8 1 0.1 _ _ governed by the expected 0.1 distribution

disagreement is "significant" if $Prob_N(\tilde{\chi}^2 \ge \tilde{\chi}_0^2)$ is less than 5 % disagreement is "highly significant" if $Prob_N(\tilde{\chi}^2 \ge \tilde{\chi}_0^2)$ is less than 1 %

reject the expected distribution