
:    A AA x x σ= ±

Weighted Averages
combining separate measurements: what is the best estimate for x ?
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combining separate measurements: what is the best estimate for x ?

assume that measurements are governed 
by Gauss distribution with true value X
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Weighted Averages

x1, x2, …, xN - measurements of a single quantity x with uncertainties σ1, σ2, …, σN
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Two students measure the radius of a planet and get final answers 
R =25 000±3 000 km and R =19 000±2 500 km

Example Problem 

RA=25,000±3,000 km and RB=19,000±2,500 km. 
The best estimate of the true radius of a planet is the weighted average. Find the best 
estimate of the true radius of a planet and the error in that estimate. 
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Least-Squares Fitting

consider two variables x and y that are connected by a linear relation
y = A + Bxy  A + Bx

eVc
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( )cd eVh

hi l h d f fi di h b i h

h = slope
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( )ch
df
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x1, x2, …, xN

graphical method of finding the best straight 
line to fit a series of experimental points 

f
- W0

The Photoelectric Effect
x1, x2, …, xN
y1, y2, …, yN

find A and B

analytical method of finding the best straight line to fit a series of experimental y g g p
points is called linear regression or the least-squares fit for a line



(true value for )i iy A Bx= +

Calculation of the Constants A and B
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find minimum of  χ 2
least squares fitting
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Uncertainties in y, A, and B

( )21
2

N

y i iy A Bx
N

σ = − −∑ uncertainty in the measurement of y( )
1

2

2y
i

A y

N

x
σ σ

=−

=
∆

∑

∑ uncertainties in the constants A and B

B y
Nσ σ

∆

=
∆

given by error propagation in terms 
of uncertainties in y1, … , yN

y = A + Bx

σy



Example of Calculation of the Constants A and B
if volume of an ideal gas is kept constant, 
its temperat re is a linear f nction of its press reits temperature is a linear function of its pressure 
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Covariance
x x xδ

δ
= ±

±
( , )q x y q qδ= ±
find q and δq

y y yδ= ± _

σq for arbitrary σx and σy
σ and σ can be correlatedσx and σy can be correlated

covariance σxy

when σx and σy are independent σxy = 0



Coefficient of Linear Correlation

do N pairs of (xi , yi) satisfy a linear relation ?

linear correlation coefficient
or correlation coefficient

if r is close to ± 1 
when x and y are linearly correlated
if r is close to 0 
when there is no relationship between x and ywhen there is no relationship between x and y
x and y are uncorrelated



Quantitative Significance of r

calculate correlation coefficient

r = 0.8
N = 10

probability that N measurements of two uncorrelated 
variables x and y would produce r ≥ r0 Table C

= 0.5 %

it is very unlikely that y y
x and y are uncorrelated

it is very likely that correlation is “significant” if ProbN(|r| ≥ r0) is less than 5 % y y
x and y are correlatedcorrelation is “highly significant” if ProbN(|r| ≥ r0) is less than 1 %

the correlation is highly significant



Example:Example:
Calculate the covariance and the correlation coefficient r for the following six 
pairs of measurements of two sides x and y of a rectangle. Would you say these 
data show a significant linear correlation coefficient? Highly significant?

A    B    C    D    E     F
x = 71  72   73   75   76   77   mm
y = 95  96   96   98   98   99   mm

x

y

( )

74
97

1 1

x
y

=
=

∑

x

( )1 1( )( ) ( 3) ( 2) ... 3 2 3
6

( )( )
0.98

xy i i

xy i i

x x y y
N

x x y y
r

σ

σ

= − − = − × − + + × =

− −
= = =

∑
∑

covariance

correlation coefficient
2 2

6

( ) ( )

( 0.98) 0.2%

x y i ix x y y

Prob r

σ σ − −

≥ ≈

∑ ∑
Table C therefore, the correlation is both 

significant and highly significantsignificant and highly significant



The square-root rule for a counting experiment
for events which occur at random 
but with a definite average rate N occurrences in a time T
the standard deviation is N

average number of counts in a time T

(number of counts in time T) N N= ±

uncertaintyaverage number of counts in a time T uncertainty

1N
N N

= =(fractional uncertainty)                          reduces with increasing N

Examples
Photoemission:
if i i t i 106 h t / t i t i h t /6 310 10

fractional 
uncertainty

1 1if average emission rate is 106 photons/s, uncertainty is                     photons/s 
and expected number is 106 ± 103 photons/s

Rain droplets on a windshield: 

6 310 10= 1 1
1000N

=

p
if average rate is 100 droplets/s, uncertainty is                    droplets/s 
and expected number is 100 ± 10 droplets/s

100 10= 1 1
10N

=



Chi Squared Test for a Distribution

40 measured values of x (in cm) are these measurements40 measured values of x (in cm) are these measurements 
governed by a Gauss distribution ?

deviation16 % 16 %
34 %   34 %

~ 1 ?= expected size of its fluctuation
16 % 16 %

chi squared

~ 1 ?=

observed and expected distributions 
agree about as well as expected
significant disagreement between

Ok – observed number
E – expected number

g g
observed and expected distributions

no reason to doubt that theEk – expected number
– fluctuations of Ek

no reason to doubt that the 
measurements were governed 
by a Gauss distribution< n



Degrees of Freedom and Reduced Chi Squared

n is the number of bins

a better procedure is to compare χ2 not with the number of bins n
but instead with the number of degree of freedom d

n is the number of bins
c is the number of parameters that had to be calculated 

from the data to compute the expected numbers Ek
c is called the number of constrainsc is called the number of constrains
d is the number of degrees of freedom

reduced chi squared



Probabilities of Chi Squared
quantitative measure of agreement between observed data and their expected distribution

probability of obtaining

Table D

x

probability of obtaining 
a value of χ 2 greater or 
equal to χ0

2 , assuming
the measurements are

~
~

di t i “ i ifi t” if P b ( 2 ≥ 2) i l th 5 %~~

the measurements are 
governed by the expected 
distribution

j h ddisagreement is “significant” if ProbN(χ2 ≥ χ0
2) is less than 5 %

disagreement is “highly significant” if ProbN(χ2 ≥ χ0
2) is less than 1 %~~

reject the expected 
distribution


