Significant Figures

$$
\begin{aligned}
& g=9.82 \pm 0.02385 \mathrm{~m} / \mathrm{s}^{2} \\
& g=9.82 \pm 0.02 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Experimental uncertainties should be rounded to one significant figure (to two significant if the leading digit in the uncertainty is a 1)

$$
\begin{aligned}
& g=9.82 \pm 0.01437 \mathrm{~m} / \mathrm{s}^{2} \\
& g=9.82 \pm 0.014 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

The last significant figure in any answer should be of the same order of magnitude (in the same decimal position) as the uncertainty

$$
\begin{aligned}
& g=9.82378 \pm 0.02 \mathrm{~m} / \mathrm{s}^{2} \\
& g=9.82 \pm 0.02 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$g=9.82378 \pm 0.02385 \mathrm{~m} / \mathrm{s}^{2} \rightarrow g=9.82378 \pm 0.02 \mathrm{~m} / \mathrm{s}^{2} \rightarrow g=9.82 \pm 0.02 \mathrm{~m} / \mathrm{s}^{2}$
$v=6051.78 \pm 32 \mathrm{~m} / \mathrm{s} \rightarrow v=6051.78 \pm 30 \mathrm{~m} / \mathrm{s} \rightarrow \underline{v=6050 \pm 30 \mathrm{~m} / \mathrm{s}}$

Arbitrary Functions of One Variable

Example
Find side a of a square with area $S=25 \pm 2 \mathrm{~cm}^{2}$.

$$
\begin{aligned}
& a=\sqrt{S}=\sqrt{25}=5 \mathrm{~cm} \\
& \delta a=\left|\frac{d a}{d S}\right| \delta S=\frac{1}{2 \sqrt{S}} \delta S=\frac{1}{2 \cdot \sqrt{25}} 2=0.2 \mathrm{~cm} \\
& a=5.0 \pm 0.2 \mathrm{~cm}
\end{aligned}
$$

General Formula for Error Propagation

$$
\begin{aligned}
& q=q(x, y, z) \\
& q_{\text {best }}=q\left(x_{\text {best }}, y_{\text {best }}, z_{\text {best }}\right)
\end{aligned}
$$

partial derivatives of q
\checkmark with respect to x, y, and z
for independent random errors $\delta x, \delta y$, and δz

$$
\sqrt{a^{2}+b^{2}}=a \oplus b
$$

shorthand notation for quadratic sum quadratic sum = addition in quadrature
for independent random errors

$$
\begin{aligned}
& \text { errors } \quad \delta x \leftrightarrow \\
& \underset{\uparrow}{\sigma_{x}} \\
& \sigma=(\text { sigma })=\text { Standard Deviation }
\end{aligned}
$$

Error analysis: Calculating $\delta \lambda$

$d(\sin \alpha+\sin \theta)=n \lambda \longleftarrow$ Grating Equation
$\lambda=\frac{d}{n}(\sin \alpha+\sin \theta)$
$\delta \lambda=\sqrt{\left(\frac{\partial \lambda}{\partial \alpha} \delta \alpha\right)^{2}+\left(\frac{\partial \lambda}{\partial \theta} \delta \theta\right)^{2}}=\frac{d}{n} \sqrt{(\cos \alpha \cdot \delta \alpha)^{2}+(\cos \theta \cdot \delta \theta)^{2}}$

estimate: $\quad \delta \lambda \approx d \sqrt{(\delta \alpha)^{2}+(\delta \theta)^{2}}$
always use radians when calculating the errors on trig functions
for a 0.5 degree error in α and $\theta\left(\delta \alpha=\delta \theta=0.5^{0}=\frac{2 \pi \mathrm{rad}}{360^{0}} \cdot 0.5^{0}=0.009 \mathrm{rad}\right)$
$\delta \lambda=1016 \sqrt{(0.009)^{2}+(0.009)^{2}} \mathrm{~nm}=13 \mathrm{~nm}$
make error analysis using $\alpha, \theta, \delta \alpha, \delta \theta$ of your experiment

The mean

$$
\begin{array}{ll}
x_{1}, x_{2}, \ldots, x_{N} & N \text { measurements of the quantity } x \\
x_{\text {best }}=\bar{x} & \text { the best estimate for } x \rightarrow \text { the average or mean }
\end{array}
$$

$$
\bar{x}=\frac{x_{1}+x_{2}+\ldots+x_{N}}{N}=\frac{\sum x_{i}}{N}
$$

The standard deviation

$$
\begin{gathered}
d_{i}=x_{i}-\bar{x} \quad \text { deviation of } x_{i} \text { from } x \\
\sigma_{x}=\sqrt{\frac{1}{N-1} \sum\left(x_{i}-\bar{x}\right)^{2}} \quad \begin{array}{l}
\text { standard deviation of } x \\
\text { average uncertainty of the } \\
\text { measurements } x_{1}, \ldots, x_{N} \\
\text { RMS (route mean square) deviation }
\end{array}
\end{gathered}
$$

uncertainty in any one measurement of $x \rightarrow \delta x=\sigma_{x}$ \downarrow 68% of measurements will fall in the range $x_{\text {true }} \pm \sigma_{x}$

$x_{\text {true }}-\sigma_{x} \quad x_{\text {true }}+\sigma_{x}$

The standard deviation of the mean

$$
\sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{N}}
$$

uncertainty in \bar{x}
is the standard deviation of the mean
based on the N measured values x_{1}, \ldots, x_{N} we
can state our final answer for the value of x :
(value of x) $=x_{\text {best }} \pm \delta x_{\text {best }}$

$$
x_{\text {best }}=\bar{x} \quad \quad \delta x=\sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{N}} \quad(\text { value of } x)=\bar{x} \pm \sigma_{\bar{x}}
$$

Exp. 1: 4 measurements $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4} \quad N=4$ for each spectral line

$$
\bar{\lambda}=\frac{\sum \lambda_{i}}{N} \quad \delta \bar{\lambda}=\frac{\delta \lambda}{\sqrt{N}}=\frac{1}{\sqrt{N}} \sqrt{\frac{1}{N-1} \sum\left(\lambda_{i}-\bar{\lambda}\right)^{2}}
$$

EXPERIMENT \#2

Coherence of Light and the Interferometer

GOALS

Physics
Measure the coherence length of light using an interferometer. Establish that "filtering" increases the coherence length.

References

Serway, Moses, Moyer §1.3

coherence

The degree of coherence of a source of light is the degree to which that light consists of long, unbroken trains of sinusoidal waves.

Suppose we have a train of sine waves with wavelength λ_{0} having some total length in space $\Delta \chi$, and propagating at velocity c.

$$
\begin{array}{rlrl}
E(t) & =E_{o} \sin \omega_{o} t & & \text { for } 0<t<\Delta \tau \\
& =0 & & \text { for } t<0 \text { or } t>\Delta \tau \\
& & \\
& & \Delta \tau=\Delta \chi / c
\end{array}
$$

What frequencies are present in this wave packet?
The wave packet turns on and turns off, i.e., is not continuously oscillating.
Therefore, it cannot be presented by a single frequency $\omega_{0}=2 \pi c / \lambda_{0}$.

Fourier analysis: Any arbitrary function can be represented as a sum of sine or cosine functions of different frequencies and different strengths
$g(\omega)$ represents the strength of various frequencies in the original function

For an infinitely long train of waves, i.e. $E(t)=E_{0} \sin \omega_{0} t$, for $-\infty<t<\infty$ $g(\omega)$ is a "delta function" $g(\omega)=\delta\left(\omega-\omega_{0}\right)$, i.e., a single infinitely narrow peak at $\omega=\omega_{0}$, indicating that there is only one frequency

For a wave train of length $\Delta \chi=c \Delta \tau$ a band of frequencies of width $\Delta \omega$ appears in $g(\omega)$, centered at ω_{0}

A general result: a wave train of frequency ω_{0} truncated to a duration $\Delta \tau$ has its frequency spectrum spread over a range $\Delta \omega$, such that $\Delta \omega \Delta \tau=2 \pi$

$$
\omega_{o}=\frac{2 \pi c}{\lambda_{0}} \rightarrow \Delta \omega=\frac{2 \pi c}{\lambda_{0}^{2}} \Delta \lambda
$$

$$
2 \pi=\Delta \omega \Delta \tau=\frac{2 \pi c}{\lambda_{0}^{2}} \Delta \lambda \frac{\Delta \chi}{c} \rightarrow \frac{\Delta \lambda \Delta \chi}{\lambda_{0}^{2}}=1
$$

the spread of wavelengths $\Delta \lambda$ is called the linewidth the spread in frequencies $\Delta \omega$ is called the bandwidth the packet length $\Delta \chi$ is called the coherence length the time associated with the coherence length $\Delta \tau=\Delta \chi / c$ is called the coherence time

The electric field amplitude of the wave train radiated by an atom. The vertical lines represent collisions separated by periods of free flight with the mean duration $\Delta \tau$.

