Significant Figures

$$g = 9.82 \pm 0.02385 \text{ m/s}^2$$

 $g = 9.82 \pm 0.02 \text{ m/s}^2$

Experimental uncertainties should be rounded to one significant figure (to two significant if the leading digit in the uncertainty is a 1)

$$g = 9.82 \pm 0.01437 \text{ m/s}^2$$

 $g = 9.82 \pm 0.014 \text{ m/s}^2$

The last significant figure in any answer should be of the same order of magnitude (in the same decimal position) as the uncertainty

$$g = 9.82378 \pm 0.02 \text{ m/s}^2$$
$$g = 9.82 \pm 0.02 \text{ m/s}^2$$

 $g = 9.82378 \pm 0.02385 \text{ m/s}^2 \rightarrow g = 9.82378 \pm 0.02 \text{ m/s}^2 \rightarrow g = 9.82 \pm 0.02 \text{ m/s}^2$ $v = 6051.78 \pm 32 \text{ m/s} \rightarrow v = 6051.78 \pm 30 \text{ m/s} \rightarrow v = 6050 \pm 30 \text{ m/s}$

Arbitrary Functions of One Variable

Example

Find side *a* of a square with area $S = 25 \pm 2 \text{ cm}^2$. $a = \sqrt{S} = \sqrt{25} = 5 \text{ cm}$ $\delta a = \left| \frac{da}{dS} \right| \delta S = \frac{1}{2\sqrt{S}} \delta S = \frac{1}{2 \cdot \sqrt{25}} 2 = 0.2 \text{ cm}$ $a = 5.0 \pm 0.2 \text{ cm}$

General Formula for Error Propagation

$$q = q(x, y, z)$$
$$q_{best} = q(x_{best}, y_{best}, z_{best})$$

partial derivatives of qwith respect to x, y, and z

$$\delta q = \sqrt{\left(\frac{\partial q}{\partial x}\delta x\right)^2 + \left(\frac{\partial q}{\partial y}\delta y\right)^2 + \left(\frac{\partial q}{\partial z}\delta z\right)^2}$$

for independent random errors δx , δy , and δz

 $\sqrt{a^2 + b^2} = a \oplus b$ shorthand notation for quadratic sum quadratic sum = addition in quadrature

for independent random errors $\delta x \leftrightarrow \sigma_x$ $\bigstar^x = (sigma) = Standard Deviation$

Error analysis: Calculating
$$\delta\lambda$$

 $d(\sin \alpha + \sin \theta) = n\lambda$ Grating Equation
 $\lambda = \frac{d}{n}(\sin \alpha + \sin \theta)$
 $\delta\lambda = \sqrt{\left(\frac{\partial\lambda}{\partial\alpha}\delta\alpha\right)^2 + \left(\frac{\partial\lambda}{\partial\theta}\delta\theta\right)^2} = \frac{d}{n}\sqrt{(\cos \alpha \cdot \delta\alpha)^2 + (\cos \theta \cdot \delta\theta)^2}$
always use radians when calculating the errors on trig functions
estimate: $\delta\lambda \approx d\sqrt{(\delta\alpha)^2 + (\delta\theta)^2}$
for a 0.5 degree error in α and θ ($\delta\alpha = \delta\theta = 0.5^0 = \frac{2\pi \text{ rad}}{360^0} \cdot 0.5^0 = 0.009 \text{ rad}$)
 $\delta\lambda = 1016 \sqrt{(0.009)^2 + (0.009)^2} \text{ nm} = 13 \text{ nm}$

make error analysis using α , θ , $\delta \alpha$, $\delta \theta$ of your experiment

The mean

 x_1, x_2, \dots, x_N N measurements of the quantity x $x_{best} = \overline{x}$ the best estimate for $x \to$ the average the best estimate for $x \rightarrow$ the average or mean

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_N}{N} = \frac{\sum x_i}{N}$$

The standard deviation

$$d_i = x_i - \overline{x}$$
 deviation of x_i from x

$$\sigma_x = \sqrt{\frac{1}{N-1}\sum \left(x_i - \overline{x}\right)^2}$$

standard deviation of x average uncertainty of the measurements x_1, \ldots, x_N RMS (route mean square) deviation

uncertainty in any one measurement of $x \to \delta x = \sigma_x$ uncertainty in any one measurement of $x \to \partial x = \sigma_x$ \downarrow 68% of measurements will fall in the range $x_{true} \pm \sigma_x$ $x_{true} = \sigma_x$ $x_{true} + \sigma_x$

The standard deviation of the mean

uncertainty in \overline{x} is the standard deviation of the mean

based on the *N* measured values $x_1, ..., x_N$ we can state our final answer for the value of *x*:

(value of x) =
$$x_{best} \pm \delta x_{best}$$

 $x_{best} = \overline{x}$ $\delta x = \sigma_{\overline{x}} = \frac{\sigma_x}{\sqrt{N}}$ (value of x) = $\overline{x} \pm \sigma_{\overline{x}}$

<u>Exp. 1:</u> 4 measurements $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ N = 4for each spectral line $\overline{\lambda} = \frac{\sum \lambda_i}{N}$ $\delta \overline{\lambda} = \frac{\delta \lambda}{\sqrt{N}} = \frac{1}{\sqrt{N}} \sqrt{\frac{1}{N-1} \sum (\lambda_i - \overline{\lambda})^2}$

EXPERIMENT #2 Coherence of Light and the Interferometer

GOALS

Physics

Measure the coherence length of light using an interferometer. Establish that "filtering" increases the coherence length.

References

Serway, Moses, Moyer §1.3

coherence

The <u>degree of coherence</u> of a source of light

is the degree to which that light consists of long, unbroken trains of sinusoidal waves.

Suppose we have a train of sine waves with wavelength λ_0 having some total length in space $\Delta \chi$, and propagating at velocity *c*.

What frequencies are present in this wave packet?

The wave packet turns on and turns off, i.e., is not continuously oscillating. Therefore, it cannot be presented by a single frequency $\omega_0 = 2\pi c/\lambda_0$.

Fourier analysis: Any arbitrary function can be represented as a sum of sine or cosine functions of different frequencies and different strengths

 $g(\omega)$ represents the strength of various frequencies in the original function

For an <u>infinitely long</u> train of waves, i.e. $E(t) = E_0 \sin \omega_0 t$, for $-\infty < t < \infty$

 $g(\omega)$ is a "delta function" $g(\omega) = \delta(\omega - \omega_0)$, i.e., a single infinitely narrow peak at $\omega = \omega_0$, indicating that there is only one frequency

For a <u>wave train</u> of length $\Delta \chi = c \Delta \tau$ a band of frequencies of width $\Delta \omega$ appears in $g(\omega)$, centered at ω_0

<u>A general result</u>: a wave train of frequency ω_0 truncated to a duration $\Delta \tau$ has its frequency spectrum spread over a range $\Delta \omega$, such that $\Delta \omega \Delta \tau = 2\pi$

the spread of wavelengths $\Delta \lambda$ is called the <u>linewidth</u> the spread in frequencies $\Delta \omega$ is called the <u>bandwidth</u> the packet length $\Delta \chi$ is called the <u>coherence length</u> the time associated with the coherence length $\Delta \tau = \Delta \chi/c$ is called the <u>coherence time</u>

