Lorentz Transormation:

$$
\begin{aligned}
& x^{\prime}=\gamma(x-v t) \\
& y^{\prime}=y \\
& z^{\prime}=z \\
& t^{\prime}=\gamma\left(t-v x / c^{2}\right)
\end{aligned}
$$

Inverse Lorentz Tranformation:

$$
\begin{aligned}
& x=\gamma\left(x^{\prime}+v t^{\prime}\right) \\
& y=y^{\prime} \\
& z=z^{\prime} \\
& t=\gamma\left(t^{\prime}+v x^{\prime} / c^{2}\right)
\end{aligned}
$$

Relativistic transformation of velocities

$$
\begin{aligned}
& u_{x}^{\prime}=\left(u_{x}-v\right) /\left(1-u_{x} v / c^{2}\right) \\
& u_{y}^{\prime}=u_{y} / \gamma\left(1-u_{x} v / c^{2}\right)
\end{aligned}
$$

Inverse Transformation:
$u_{x}=\left(u_{x}^{\prime}+v\right) /\left(1+u_{x}^{\prime} v / c^{2}\right)$
$u_{y}=u_{y}^{\prime} / \gamma\left(1+u_{x}^{\prime} v / c^{2}\right)$

Relativistic Doppler Effect:
$f_{\text {obs }}=\sqrt{\frac{1+v / c}{1-v / c}} f_{\text {source }}$ (approaching)
Relativistic Momentum
$p_{x}=\gamma m u_{x} \quad ;$ similarly for y - and z -components
$\gamma=\frac{1}{\sqrt{1-u^{2} / c^{2}}}$
Kinetic Energy $K=\gamma m c^{2}-m c^{2}$
Total Energy $E=\gamma m c^{2}=K+m c^{2}$
$E^{2}=p^{2} c^{2}+m^{2} c^{4}$
Force due to Electric field : $\mathbf{F}=q \mathbf{E}$
Force due to Magnetic Field: $\mathbf{F}=q \mathbf{v x B}$
Particle of charge q moving in magnetic field B in circle of radius r has relativistic momentum $p=q B r$

Stefan's Law $e_{t}=\sigma T^{4} \quad \sigma=5.67 .10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$

Planck's Blackbody radiation formula: $u(f, T) d f=\frac{8 \pi h f^{3}}{c^{3}}\left(\frac{1}{e^{h f / k T}-1}\right) d f$
De Broglie wavelength $\lambda=h / p$
Energy of photon $\mathrm{E}=\mathrm{hf}$
For photon $\lambda \mathrm{f}=\mathrm{c}$
Compton formula $\lambda^{\prime}-\lambda=\left(h / m_{e} \mathrm{c}\right)(1-\cos \varphi)$
Bragg's Law $n \lambda=2 d \sin \theta(n=1,2, \ldots \ldots)$
Drag Force on drop of radius α and velocity v in medium of viscosity η (always opposite to direction of v) : $D=6 \pi \alpha \eta v=C v$

Rutherford's formula for scattering of alpha particles from nucleus of charge Z :

$$
\Delta n=\frac{k^{2} Z^{2} e^{4} N n A}{4 R^{2}\left(\frac{1}{2} m_{\alpha} v_{\alpha}^{2}\right)^{2} \sin ^{4}(\phi / 2)}
$$

Bohr's quantization for Angular momentum $m v r=n \hbar$
Energy levels of Bohr atom
$E_{n}=-\frac{k e^{2}}{2 a_{0}}\left(\frac{1}{n^{2}}\right)=-\frac{13.6}{n^{2}} e \mathrm{~V}$
Bohr Radius $a_{0}=\frac{\hbar^{2}}{m e^{2} k}=0.5292 .10^{-10} \mathrm{~m}$
Rydberg Constant $R=\frac{k e^{2}}{2 a_{0} h c}=1.097 .10^{7} \mathrm{~m}^{-1}$
linear momentum operator $p_{x}=-i \hbar \frac{\partial}{\partial x}$
Angular momentum operator about z-axis $\quad L_{z}=-i \hbar \frac{\partial}{\partial \phi}$
Heisenberg Uncertainty principles: $\begin{gathered}\Delta p_{x} \Delta x \geq \hbar / 2\end{gathered}$

$$
\Delta E \Delta t \geq \hbar / 2
$$

One-dimensional time-independent Schrodinger Equation $-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+U(x) \psi=E \psi$
3-dimensional time-independent Schrodinger Equation $-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+U \psi=E \psi$
$\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}=\frac{\partial^{2}}{\partial r^{2}}+\left(\frac{2}{r}\right) \frac{\partial}{\partial r}+\frac{1}{r^{2}}\left[\frac{\partial^{2}}{\partial \theta^{2}}+\cot \theta \frac{\partial}{\partial \theta}+\csc ^{2} \theta \frac{\partial^{2}}{\partial \phi^{2}}\right]$
The expectation value of some function of $\mathrm{x}, \mathrm{f}(\mathrm{x})$ is given by $\int_{-\infty}^{\infty} d x P(x) f(x)$ where $\mathrm{P}(\mathrm{x}) \mathrm{dx}$ is the (normalized) probability distribution for getting a value of x between x and $x+d x$.

Expectation value of some quantum mechanical operator O:
$\langle O\rangle=\int_{-\infty}^{\infty} d x \psi^{*}(x) O \psi(x)$
Relation between eigenfunctions, operators, and eigenvalues:
$O \psi_{n}(x)=o_{n} \psi_{n}(x)$
Standard deviation error for a variable represented by operator O:
$\Delta O=\sqrt{\left\langle O^{2}\right\rangle-\langle O\rangle^{2}}$

Electron current through unit area for free electrons $=\mathrm{v}|\mathrm{A}|^{2} ; \mathrm{v}=$ velocity of electrons; A =amplitude of plane wave.
$e=1.6 \times 10^{-19} \mathrm{C}$
proton mass $=1.675 .10^{-27} \mathrm{~kg}=939.6 \mathrm{MeV} / \mathrm{c}^{2}$
electron mass
$m_{e}=9.1 \times 10^{-31} \mathrm{Kg}=0.511 \mathrm{MeV} / c^{2}$
$c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$1 \mathrm{MeV}=1.6 \times 10^{-13} \mathrm{~J}$
$1 \mathrm{MeV} / \mathrm{c}^{2}=1.78 \times 10^{-30} \mathrm{Kg}$
$1 \mathrm{MeV} / \mathrm{c}=5.344 \times 10^{-22} \mathrm{Kg} . \mathrm{m} / \mathrm{s}$
$1 \mathrm{eV}=1.6 .10^{-19} \mathrm{~J}$
$\mathrm{h}=6.626 .10^{-34} \mathrm{~J} . \mathrm{s}=4.136 .10^{-15} \mathrm{eV} . \mathrm{s}$
$\hbar=h / 2 \pi=1.055 .10^{-34} \mathrm{~J} . \mathrm{s}=6.582 .10^{-16} \mathrm{eV} . \mathrm{s}$
Coulomb's constant $k=1 /\left(4 \pi \varepsilon_{0}\right)=8.99 \cdot 10^{9} N . m^{2} / k g^{2}$
Bohr radius $\mathrm{a}_{0}=0.529 .10^{-10} \mathrm{~m}$
1 Rydberg (Energy required to ionize hydrogen atom) $=13.6 \mathrm{eV}$

Rydberg Constant $\mathrm{R}=1.097 .10^{7} \mathrm{~m}^{-1}$

