

## Physics 2D Lecture Slides Lecture 5

April 6, 2009

## Lorentz Velocity Transformation Rule

$S$ and $S^{\prime}$ are measuring ant's speed $u$ along $x, y, z$ axes


In $\mathrm{S}^{\prime}$ frame, $\mathrm{u}_{\mathrm{x}^{\prime}}=\frac{x_{2}^{\prime}-x_{1}^{\prime}}{t_{2}^{\prime}-t_{1}^{\prime}}=\frac{d x^{\prime}}{d t^{\prime}}$
$d x^{\prime}=\gamma(d x-v d t), d t^{\prime}=\gamma\left(d t-\frac{v}{c^{2}} d x\right)$
$\mathrm{u}_{\mathrm{x}^{\prime}}=\frac{d x-v d t}{d t-\frac{v}{c^{2}} d x}$, divide by dt
$\mathrm{u}_{\mathrm{x}^{\prime}}=\frac{u_{x}-v}{1-\frac{v u_{x}}{c^{2}}}$
For $\mathrm{v} \ll \mathrm{c}, \mathrm{u}_{\mathrm{x}^{\prime}}=u_{x}-v$
(Galilean Trans. Restored)

## Velocity Transformation Perpendicular to S-S' motion

$$
\begin{aligned}
& d y^{\prime}=d y, \quad d t^{\prime}=\gamma\left(d t-\frac{v}{c^{2}} d x\right) \\
& u_{y}^{\prime}=\frac{d y^{\prime}}{d t^{\prime}}=\frac{d y}{\gamma\left(d t-\frac{v}{c^{2}} d x\right)}
\end{aligned}
$$

divide by dt on RHS

$$
u_{y}^{\prime}=\frac{u_{y}}{\gamma\left(1-\frac{v}{c^{2}} u_{x}\right)}
$$

There is a change in velocity in the direction $\perp$ to S-S' motion!

## Similarly

Z component of
Ant' s velocity transforms as

$$
u_{z}^{\prime}=\frac{u_{z}}{\gamma\left(1-\frac{v}{c^{2}} u_{x}\right)}
$$

## Inverse Lorentz Velocity Transformation

## Inverse Velocity Transform:

$$
\mathrm{u}_{\mathrm{x}}=\frac{u_{x^{\prime}}+v}{1+\frac{v u_{x^{\prime}}}{c^{2}}}
$$

$$
u_{y}=\frac{u_{y}^{\prime}}{\gamma\left(1+\frac{v}{c^{2}} u_{x}^{\prime}\right)}
$$

As usual, replace
$\mathrm{v} \Rightarrow$ - V

$$
u_{z}=\frac{u_{z}^{\prime}}{\gamma\left(1+\frac{v}{c^{2}} u_{x}^{\prime}\right)}
$$

## Does Lorentz Transform "work" For Topgun ?



Two rockets A \&B travel in opposite directions

An observer on earth (S) measures speeds $=0.75 \mathrm{c}$
And 0.85 c for A \& B respectively

What does A measure as B's speed?

Place an imaginary S' frame on Rocket $A \Rightarrow v=0.75 c$ relative to Earth Observer S

$$
u_{x}^{\prime}=\frac{u_{x}-v}{1-\frac{u_{x} v}{c^{2}}}=\frac{-0.850 c-0.750 c}{1-\frac{(-0.850 c)(0.750 c)}{c^{2}}}=-0.977 c
$$

Consistent with Special Theory of Relativity

## Example of Inverse velocity Transform



Biker moves with speed $=0.8 \mathrm{c}$ past stationary observer

Throws a ball forward with speed $=0.7 \mathrm{c}$

## What does stationary

 observer see as velocity of ball ?Place S' frame on biker Biker sees ball speed

$$
u_{X^{\prime}}=0.7 \mathrm{c}
$$

$$
u_{x}=\frac{u_{x}^{\prime}+v}{1+\frac{u_{x}^{\prime} v}{c^{2}}}=\frac{0.70 c+0.80 c}{1+\frac{(0.70 c)(0.80 c)}{c^{2}}}=0.96 c
$$

## Hollywood Yarns Of Time Travel!



It's Nothing Personal.

## TERMINATDR <br> JUロGMENT DAY



Terminator: Can you be seen to be born before your mother?
A frame of Ref where sequence of events is REVERSED ?!!


$$
\Delta t^{\prime}=t_{2}^{\prime}-t_{1}^{\prime}=\gamma\left[\Delta t-\left(\frac{v \Delta x}{c^{2}}\right)\right]
$$

Reversing sequence of events $\Rightarrow \Delta t^{\prime}<0$

I Can't be seen to arrive in SF before I take off from SD For what value of v can $\Delta t^{\prime}<0$
$\Delta t^{\prime}<0 \Rightarrow \Delta t<\frac{v \Delta x}{c^{2}} \Rightarrow 1<\frac{v \Delta x}{c^{2} \Delta t}=\frac{v \mathrm{u}}{c^{2}}$
$\Rightarrow \frac{\mathrm{v}}{\mathrm{c}}>\frac{c}{u} \quad \Rightarrow v>c:$ Not allowed


## Relativistic Momentum and Revised Newton's Laws

Need to generalize the laws of Mechanics \& Newton to confirm to Lorentz Transform Watching an Inelastic Collision between two putty balls and the Special theory of relativity: Example :

$\mathrm{P}=0$
$v_{1}^{\prime}=\frac{v_{1}-v}{1-\frac{v_{1} v}{c^{2}}}=0, \quad v_{2}^{\prime}=\frac{v_{2}-v}{1-\frac{v_{1} v}{c^{2}}}=\frac{-2 v}{1+\frac{v^{2}}{c^{2}}}, \quad V^{\prime}=\frac{V-v}{1-\frac{V v}{c^{2}}}=-v$
$p_{\text {before }}^{\prime}=m v_{1}^{\prime}+m v_{2}^{\prime}=\frac{-2 m v}{1+\frac{v^{2}}{c^{2}}}, p_{\text {after }}^{\prime}=2 m V^{\prime}=-2 m v$
$\mathrm{p}_{\text {before }} \neq \mathrm{p}_{\text {after }}$


## Definition (without proof) of Relativistic Momentum

$$
\mathbf{p}=\frac{m \mathbf{u}}{\sqrt{1-u^{2} / c^{2}}}
$$

With the new definition relativistic momentum is conserved in all frames of references : Do the exercise

## New Concept

Rest Mass is mass of object in frame in which it at rest.

$$
\gamma=1 / \sqrt{1-u^{2} / c^{2}}
$$

$u$ is speed of object, NOT reference frame.

## Nature of Relativistic Momentum



## Relativistic Force \& Acceleration

$$
\vec{p}=\frac{m \vec{u}}{\sqrt{1-(u / c)^{2}}}=\gamma m \vec{u}
$$

$$
\begin{aligned}
& \vec{F}=\frac{d \vec{p}}{d t}=\frac{d}{d t}\left(\frac{m \vec{u}}{\sqrt{1-(u / c)^{2}}}\right) \text { use } \frac{d}{d t}=\frac{d u}{d t} \frac{d}{d u} \\
& F=\left[\frac{m}{\sqrt{1-(u / c)^{2}}}+\frac{m u}{\left(1-(u / c)^{2}\right)^{3 / 2}} \times\left(\frac{-1}{2}\right)\left(\frac{-2 u}{c^{2}}\right)\right] \frac{d u}{d t}
\end{aligned}
$$

## Relativistic

Force
And
Acceleration

Reason why you cant quite get up to the speed of light no matter how hard you try!
$F=\left[\frac{m c^{2}-m u^{2}+m u^{2}}{c^{2}\left(1-(u / c)^{2}\right)^{3 / 2}}\right] \frac{d u}{d t}$
$F=\left[\frac{m}{\left(1-(u / c)^{2}\right)^{3 / 2}}\right] \frac{d u}{d t}:$ Relativistic Force
Since Acceleration $\overrightarrow{\mathrm{a}}=\frac{d \vec{u}}{d t}$,[rate of change of velocity $]$
$\Rightarrow \overrightarrow{\mathrm{a}}=\frac{\overrightarrow{\mathrm{F}}}{\mathrm{m}}\left[1-(u / c)^{2}\right]^{3 / 2}$
Note: As $u / c \rightarrow 1, \vec{a} \rightarrow 0$ !!!!
Its harder to accelerate when you get closer to speed of light

## A Linear Particle Accelerator



Charged particle q moves in straight line in a uniform electric field $\overrightarrow{\mathrm{E}}$ with speed $\overrightarrow{\mathrm{u}}$ accelarates under force $\vec{F}=q \overrightarrow{\mathrm{E}}$

$$
|\overrightarrow{\mathrm{a}}|=\left|\frac{d \vec{u}}{d t}\right|=\left|\frac{\vec{F}}{m}\right|\left(1-\frac{u^{2}}{c^{2}}\right)^{3 / 2}=\left|\frac{q \vec{E}}{m}\right|\left(1-\frac{u^{2}}{c^{2}}\right)^{3 / 2}
$$

larger the potential difference V across plates, larger the force on particle

Under force, work is done on the particle, it gains Kinetic energy

New Unit of Energy
$1 \mathrm{eV}=1.6 \times 10^{-19}$ Joules
$1 \mathrm{MeV}=1.6 \times 10^{-13}$ Joules
$1 \mathrm{GeV}=1.6 \times 10-10$ Joules

Your Television (the CRT type) is a Small Particle Accelerator!


## Linear Particle Accelerator : 50 GigaVolts Accelating Potential



## Relativistic Work Done \& Change in Energy

$$
\mathbf{x}_{2}, \mathbf{u}=\mathbf{u} \quad W=\int_{x_{1}}^{x_{2}} \vec{F} \cdot d \vec{x}=\int_{x_{1}}^{x_{2}} \frac{d \vec{p}}{d t} \cdot d \vec{x}
$$

$$
p=\frac{m u}{\sqrt{1-\frac{u^{2}}{c^{2}}}} \quad \therefore \frac{d \vec{p}}{d t}=\frac{m \frac{d u}{d t}}{\left[1-\frac{u^{2}}{c^{2}}\right]^{3 / 2}},
$$

substitute in W ,

$$
\therefore \quad W=\int_{0}^{u} \frac{m \frac{d u}{d t} u d t}{\left[1-\frac{u^{2}}{c^{2}}\right]^{3 / 2}} \quad(\text { change in var } \mathrm{x} \rightarrow \mathrm{u})
$$

## Relativistic Work Done \& Change in Energy

$$
\begin{aligned}
W & =\int_{0}^{u} \frac{m u d u}{\left[1-\frac{u^{2}}{c^{2}}\right]^{3 / 2}}=\frac{m c^{2}}{\left[1-\frac{u^{2}}{c^{2}}\right]^{1 / 2}}-m c^{2} \\
& =\gamma m c^{2}-m c^{2}
\end{aligned}
$$

Work done is change in energy (KE in this case)

$$
\mathrm{K}=\gamma m c^{2}-m c^{2} \text { or Total Energy } \mathrm{E}=\gamma m c^{2}=K+m c^{2}
$$

## But Professor... Why Can't ANYTHING go faster than light?



Non-relativistic case: $\mathrm{K}=\frac{1}{2} m u^{2} \Rightarrow u=\sqrt{\frac{2 K}{m}}$

## Relativistic Kinetic Energy Vs Velocity



## A Digression: How to Handle Large/Small Numbers

- Example: consider very energetic particle with very large Energy E

$$
\gamma=\frac{E}{m c^{2}}=\frac{m c^{2}+K}{m c^{2}}=1+\frac{K}{m c^{2}}
$$

- Lets Say $\gamma=3 \times 10^{11}$, Now calculate $u$ from $\rightarrow \frac{u}{c}=\left[1-\frac{1}{\gamma^{2}}\right]^{1 / 2}$
- Try this on your el-cheapo calculator, you will get $\mathrm{u} / \mathrm{c}=1, \mathrm{u}=\mathrm{c}$ due to limited precision.
- In fact $u \cong c$ but not exactly!, try to get this analytically


## When Electron Goes Fast it Gets "Fat"



## Relativistic Kinetic Energy \& Newtonian Physics

$$
\text { Relativistic } \mathrm{KE} \quad \mathrm{~K}=\gamma m c^{2}-m c^{2}
$$

Remember Binomial Theorem
for $\mathrm{x} \ll 1 ;(1+\mathrm{x})^{\mathrm{n}}=\left(1+\frac{\mathrm{nx}}{1!}+\frac{\mathrm{n}(\mathrm{n}-1)}{2!} \mathrm{x}^{2}+\right.$ smaller terms $)$
$\therefore$ When $u \ll c,\left[1-\frac{u^{2}}{c^{2}}\right]^{-\frac{1}{2}} \cong 1+\frac{1}{2} \frac{u^{2}}{c^{2}}+\ldots$ smaller terms
so $K \cong m c^{2}\left[1+\frac{1}{2} \frac{u^{2}}{c^{2}}\right]-m c^{2}=\frac{1}{2} m u^{2} \quad$ (classical form recovered)

Total Energy of a Particle $E=\gamma m c^{2}=K E+m c^{2}$
For a particle at rest, $u=0 \Rightarrow$ Total Energy $E=\mathrm{mc}^{2}$

## $\mathrm{E}=\mathrm{mc}^{2} \Rightarrow$ Sunshine Won't Be Forever!

o: Solar Energy reaches earth at rate of 1.4 kW per square meter of surface perpendicular to the direction of the sun. by how much does the mass of sun decrease per second owing to energy loss? The mean radius of the Earth's orbit is $1.5 \times 10^{11} \mathrm{~m}$.


- Surface area of a sphere of radius $r$ is $A=4 \pi r^{2}$
- Total Power radiated by Sun = power received by a sphere whose radius is equal to earth's orbit radius


## $\mathrm{E}=\mathrm{mc}^{2} \Rightarrow$ Sunshine Won't Be Forever !

Solar
radiation


Total Power radiated by Sun
= power received by a sphere with radius equal to earth-sun orbit radius( $r$ in figure)
$P_{\text {lost }}^{\text {sun }}=\frac{P_{\text {incident }}^{\text {Earth }}}{A} A_{\text {earth-sun }}=\frac{P_{\text {incident }}^{\text {Earth }}}{A} 4 \pi r_{\text {earth-sun }}^{2}=\left(1.4 \times 10^{3} \mathrm{~W} / \mathrm{m}^{2}\right)(4 \pi)\left(1.5 \times 10^{11}\right)^{2}$ $P_{\text {lost }}^{\text {sun }}=4.0 \times 10^{26} \mathrm{~W}$
So Sun loses $\mathrm{E}=4.0 \times 10^{26} \mathrm{~J}$ of rest energy per second
Its mass decreases by $\mathrm{m}=\frac{\mathrm{E}}{\mathrm{c}^{2}}=\frac{4.0 \times 10^{26} \mathrm{~J}}{\left(3.0 \times 10^{8}\right)^{2}}=4.4 \times 10^{9} \mathrm{~kg}$ per sec $!!$
If the Sun's Mass $=2.0 \times 10^{30} \mathrm{~kg}$ So how long with the Sun last ?
One day the sun will be gone and the solar system will not be a hospitable place for life

$$
\begin{aligned}
E=\gamma m c^{2} & \Rightarrow E^{2}=\gamma^{2} m^{2} c^{4} \quad \text { Relationship between P and E } \\
p=\gamma m u \Rightarrow & p^{2} c^{2}=\gamma^{2} m^{2} u^{2} c^{2} \\
\Rightarrow E^{2}-p^{2} c^{2} & =\gamma^{2} m^{2} c^{4}-\gamma^{2} m^{2} u^{2} c^{2}=\gamma^{2} m^{2} c^{2}\left(c^{2}-u^{2}\right) \\
& =\frac{m^{2} c^{2}}{1-\frac{u^{2}}{c^{2}}}\left(c^{2}-u^{2}\right)=\frac{m^{2} c^{4}}{c^{2}-u^{2}}\left(c^{2}-u^{2}\right)=m^{2} c^{4} \\
& E^{2}=p^{2} c^{2}+\left(m c^{2}\right)^{2} . \ldots . . . . \text { important relation }
\end{aligned}
$$

For particles with zero rest mass like photon (EM waves)

$$
\mathrm{E}=\mathrm{pc} \text { or } \mathrm{p}=\frac{\mathrm{E}}{\mathrm{c}} \quad \text { (light has momentum!) }
$$

Relativistic Invariance : $E^{2}-p^{2} c^{2}=m^{2} c^{4}$ : In all Ref Frames
Rest Mass is a "finger print" of the particle

## Mass Can "Morph" into Energy \& Vice Verca

- Unlike in Newtonian mechanics
- In relativistic physics : Mass and Energy are the same thing
- New word/concept : MassEnergy, just like SpaceTime
- It is the mass-energy that is always conserved in every reaction : Before \& After a reaction has happened
- Like squeezing a balloon : Squeeze here, it grows elsewhere
- If you "squeeze" mass, it becomes (kinetic) energy \& vice verca!
- CONVERSION FACTOR $=\mathbf{C}^{2}$
- This exchange rate never changes !

