

Physics 2D Lecture Slides Lecture 3

April 1, 2009

Time Dilation and Proper Time

Watching a time interval (between 2 events) with a simple clock

Observer $\mathrm{O}^{\prime}: \Delta \mathrm{t}^{\prime}=\frac{2 d}{c}$
Observer O : Apply Pythogoras Theorem

$$
\begin{aligned}
& \quad\left(\frac{c \Delta t}{2}\right)^{2}=(d)^{2}+\left(\frac{v \Delta t}{2}\right)^{2}, \text { but } d=\left(\frac{c \Delta t^{\prime}}{2}\right) \\
& \therefore \quad c^{2}(\Delta t)^{2}=c^{2}\left(\Delta t^{\prime}\right)^{2}+v^{2}(\Delta t)^{2} \\
& \therefore \quad \Delta t=\frac{\Delta t^{\prime}}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}=\gamma \Delta t^{\prime}, \Delta t>\Delta t^{\prime}
\end{aligned}
$$

Pop Quiz !

- What happens when I reverse the clocks being watched ?
- Sally now watches Sam's clock
- Sally is moving w.r.t. Sam's clock. Sam is at rest w.r.t the clock.
- What does she make of time intervals as measured by his clock?

Measuring Time: Period of a Pendulum

- Period of a pendulum is 3.0 s in the rest frame of the pendulum
- What is period of the pendulum as seen by an observer moving at $\mathrm{v}=0.95 \mathrm{c}$

Answer:

- Proper time T' = 3.0s

- Since motion is relative and time dilation does not distinguish between
- relative motion $\rightarrow \rightarrow$ (V) from relative motion $\leftarrow \leftarrow(-\mathrm{V})$
- lets reformulate the problem like this (??)
- A pendulum in a rocket is flying with velocity $\mathrm{V}=0.95 \mathrm{c}$ past a stationary observer \bullet Moving clocks runs slower [w.r.t clock in observer's hand (rest)] by factor γ
\rightarrow Period T measured by observer $=\gamma$ T'

$$
\begin{aligned}
& \gamma=\frac{1}{\sqrt{1-(v / c)^{2}}}=\frac{1}{\sqrt{1-(0.95)^{2}}}=3.2 \\
& \Rightarrow T=\gamma T^{\prime}=3.2 \times 3.0 s=9.6 s
\end{aligned}
$$

Moving pendulum slows down \rightarrow takes longer to complete a period

All Measures of Time Slow down from a Moving Observer's Perspective !

- Your heartbeat or your pulse

- Mitosis and Biological growth
- Growth of an inorganic crystal
- '...Watching the river flow''
- ...all measures of time interval

Round The World With An Atomic Clock!

- Atomic Clock : measure time interval for certain atomic level transitions in Cesium atom
- Two planes take off from DC, travel east and west with the atomic clock
- Eastward trip took 41.2 hrs
- Westward trip took 48.6
- Atomic clocks compared to similar ones kept in DC
- Need to account for Earth's rotation + GR etc

Travel	Predicted	Measured
Eastward	$-40 \pm 23 \mathrm{~ns}$	$-59 \pm 10 \mathrm{~ns}$
Westward	$275 \pm 21 \mathrm{~ns}$	$273 \pm 7 \mathrm{~ns}$

Flying clock ticked faster or slower than reference clock. Slow or fast is due to Earth's rotation

Cosmic Rain!

- Cosmic "rays" are messengers from space
- Produced in violent collisions in the cosmos
- Typical Kinetic energy ~ $\mathbf{1 0 0} \mathbf{~ G e V}$
- Smash into Earth's outer atmosphere
- 4700 m from sea level
- Sometimes produce short lived Muons (μ)
- Muon is electron like charged particle
- ~ 200 times heavier , same charge
- Lifetime $\tau=2.2 \mu \mathrm{~s}=2.2 \times 10^{-6} \mathrm{~s}$
- Produced with speed v $\equiv \mathbf{c}$
- Distance traveled in its lifetime

$$
d=c \tau=650 m
$$

- Yet they seem to reach the surface!!
- Why => Time Dilation
- Must pay attention to frames of references involved

Cosmic Rays Are Falling On Earth : Example of Time Dilation

(a)

- Consider Two frames of references
- Muon Rider has "Proper Time"
- Time measured by observer moving along with clock
$-\Delta \mathrm{t}^{\prime}=\tau=2.2 \mu \mathrm{~S}$
$-D^{\prime}=v \Delta t^{\prime}=650 \mathrm{~m}$
- Earthling watches a moving clock (muon's) run slower
$-\Delta \mathrm{t}^{\prime}=\gamma \tau$
$-\mathrm{v}=0.99 \mathrm{c},=>\gamma=7.1$
$-D=v \Delta t=4700 m$

Muon Decay Distance Distribution

Relative to Observer on Earth Muons have a lifetime

$$
t=\gamma \tau=7.1 \tau
$$

Exponential Decay time Distribution : As in Radioactivity

Offsetting Penalty : Length Contraction

Star A

$$
L^{\prime}=\Delta t^{\prime} . V
$$

Δt^{\prime}

Rocketman Vs The Earthling

- Earth Observer saw rocketman take time $\Delta \mathrm{t}=(\mathrm{Lp} / \mathrm{V})$
- Rocketman says he is at rest, Star B moving towards him with speed V from right passed him by in time $\Delta \mathrm{t}^{\prime}$, so
- $\mathrm{L}^{\prime}=\Delta \mathrm{t}^{\prime}$. V
- But $\Delta t^{\prime}=\Delta t / \gamma \quad$ (time dilation)
- $\quad=\mathrm{L}^{\prime}=\mathrm{V} .(\Delta \mathrm{t} / \gamma)$

$$
=\operatorname{Lp} / \gamma=\operatorname{Lp}\left[1-\mathrm{v}^{2} / \mathrm{c}^{2}\right]^{1 / 2}
$$

Moving Rods Contract in direction Of relative motion

Immediate Consequences of Einstein's Postulates: Recap

- Events that are simultaneous for one Observer are not simultaneous for another Observer in relative motion
- Time Dilation : Clocks in motion relative to an Observer appear to slow down by factor γ
- Length Contraction : Lengths of Objects in motion appear to be contracted in the direction of motion by factor γ^{-1}
- New Definitions :
- Proper Time (who measures this ?)
- Proper Length (who measures this ?)
- Different clocks for different folks !

Doppler Effect In Sound : Reminder from 2C

Observed Frequency of sound INCREASES if emitter moves towards the Observer Observed Wavelength of sound DECREASES if emitter moves towards the Observer

$$
v=f \lambda
$$

Time Dilation Example: Relativistic Doppler Shift

- Light : velocity $\mathrm{c}=\mathrm{f} \lambda, \mathrm{f}=1 / \mathrm{T}$
- A source of light S at rest
- Observer S'approches S with velocity v
- S^{\prime} measures f^{\prime} or $\lambda^{\prime}, c=f^{\prime} \lambda^{\prime}$
- Expect $\mathrm{f}^{\prime}>$ f since more wave crests are being crossed by Observer S'due to its approach

(a)

Relativistic Doppler Shift

Examine two successive wavefronts emitted by S at location 1 and 2

In S' frame, T' = time between two wavefronts
In time T^{\prime}, the wavefront moves by cT' w.r.t 1
Meanwhile Light Source moves a distance vT'
Distance between successive wavefront

$$
\lambda^{\prime}=c T^{\prime}-v T^{\prime}
$$

use $f=c / \lambda$

$$
\mathrm{f}^{\prime}=\frac{\mathrm{c}}{(\mathrm{c}-\mathrm{v}) \mathrm{T}^{\prime}}, \mathrm{T}^{\prime}=\frac{\mathrm{T}}{\sqrt{1-(\mathrm{v} / \mathrm{c})^{2}}}
$$

Substituting for T^{\prime}, use $\mathrm{f}=1 / \mathrm{T}$
$\Rightarrow \mathrm{f}^{\prime}=\frac{\sqrt{1-(\mathrm{v} / \mathrm{c})^{2}}}{1-(\mathrm{v} / \mathrm{c})} f$
$\Rightarrow \mathrm{f}^{\prime}=\frac{\sqrt{1+(\mathrm{v} / \mathrm{c})}}{\sqrt{1-(\mathrm{v} / \mathrm{c})}} \mathrm{f}$
better remembered as:
$\mathrm{f}_{\text {obs }}=\frac{\sqrt{1+(\mathrm{v} / \mathrm{c})}}{\sqrt{1-(\mathrm{v} / \mathrm{c})}} \mathrm{f}_{\text {source }}$
$\mathrm{f}_{\text {obs }}=$ Freq measured by observer approching light source

