

Physics 2D Lecture Slides Lecture 3

April 1, 2009

Time Dilation and Proper Time

Watching a time interval (between 2 events) with a simple clock

• What happens when I reverse the clocks being watched ?

- Sally now watches Sam's clock
- Sally is moving w.r.t. Sam's clock. Sam is at rest w.r.t the clock.
- What does she make of time intervals as measured by his clock ?

Measuring Time: Period of a Pendulum

- Period of a pendulum is 3.0 s in the rest frame of the pendulum
- What is period of the pendulum as seen by an observer moving at v=0.95c

Answer:

- Proper time T' = 3.0s
- Since motion is relative and time dilation does not distinguish between
 - relative motion $\rightarrow \rightarrow$ (V) from relative motion $\leftarrow \leftarrow$ (-V)
- lets reformulate the problem like this (??)
 - A pendulum in a rocket is flying with velocity V =0.95c past a stationary observer
 - •Moving clocks runs slower [w.r.t clock in observer's hand (rest)] by factor γ
 - Period T measured by observer = γ T'

$$\gamma = \frac{1}{\sqrt{1 - (v/c)^2}} = \frac{1}{\sqrt{1 - (0.95)^2}} = 3.2$$

$$\Rightarrow T = \gamma T' = 3.2 \times 3.0s = 9.6s$$

Moving pendulum slows down \rightarrow takes longer to complete a period

All Measures of Time Slow down from a Moving Observer's Perspective !

• Your heartbeat or your pulse

- Mitosis and Biological growth
- Growth of an inorganic crystal
- "...Watching the river flow"
- ...all measures of time interval

Round The World With An Atomic Clock !

- Atomic Clock : measure time interval for certain atomic level transitions in Cesium atom
- Two planes take off from DC, travel east and west with the atomic clock
 - Eastward trip took 41.2 hrs
 - Westward trip took 48.6
- Atomic clocks compared to similar ones kept in DC
- Need to account for Earth's rotation + GR etc

Travel	Predicted	Measured
Eastward	-40 ± 23 ns	-59 ± 10 ns
Westward	$275 \pm 21 \text{ ns}$	273 ± 7 ns

Flying clock ticked faster or slower than reference clock. Slow or fast is due to Earth's rotation

Cosmic Rain !

- Cosmic "rays" are messengers from space
- Produced in violent collisions in the cosmos
- Typical Kinetic energy ~ 100 GeV
- Smash into Earth's outer atmosphere
 - 4700 m from sea level
- Sometimes produce short lived Muons (μ)

- Muon is electron like charged particle
 - ~ 200 times heavier , same charge
 - Lifetime $\tau = 2.2 \mu s = 2.2 \times 10^{-6} s$
 - Produced with speed $v \equiv c$
 - Distance traveled in its lifetime

 $d = c\tau = 650m$

- Yet they seem to reach the surface!!
 - Why => Time Dilation
 - Must pay attention to frames of references involved

Cosmic Rays Are Falling On Earth : Example of Time Dilation

- Consider Two frames of references
 - 1. You Riding on the Muon Particle
 - 2. Your twin watching On surface of earth
- Muon Rider has "Proper Time"
 - Time measured by observer moving along with clock
 - $\Delta t' = \tau = 2.2 \,\mu S$

$$- D' = v \Delta t' = 650m$$

- Earthling watches a moving clock (muon's) run slower
 - $\Delta t' = \gamma \tau$
 - $v = 0.99c, => \gamma = 7.1$
 - $D = v \Delta t = 4700m$

Muon Decay Distance Distribution

Relative to Observer on Earth Muons have a lifetime $t = \gamma \tau = 7.1 \tau$

Offsetting Penalty : Length Contraction

Observer O' At rest w.r.t stars A & B Watches rocketship cross from Star A to Star B in time Δt

Rocketman Vs The Earthling

- Earth Observer saw rocketman take time $\Delta t = (Lp/V)$
- Rocketman says he is at rest, Star B moving towards him with speed V from right passed him by in time $\Delta t'$, so
 - L' = $\Delta t'$. V
 - B ut $\Delta t' = \Delta t / \gamma$ (time dilation)

$$- => L' = V. (\Delta t / \gamma)$$

 $= Lp/\gamma = Lp [1 - v^2/c^2]^{1/2}$

Moving Rods Contract in direction Of relative motion

Immediate Consequences of Einstein's Postulates: Recap

- Events that are simultaneous for one Observer are not simultaneous for another Observer in relative motion
- Time Dilation : Clocks in motion relative to an Observer appear to slow down by factor γ
- Length Contraction : Lengths of Objects in motion appear to be contracted in the direction of motion by factor γ^{-1}
- New Definitions :
 - Proper Time (who measures this ?)
 - Proper Length (who measures this ?)
 - Different clocks for different folks !

Doppler Effect In Sound : Reminder from 2C

Observed Frequency of sound INCREASES if emitter moves towards the Observer Observed Wavelength of sound DECREASES if emitter moves towards the Observer

 $v = f \lambda$

Time Dilation Example: Relativistic Doppler Shift

- Light : velocity $c = f \lambda$, f=1/T
- A source of light S at rest
- Observer S'approches S with velocity v
- S' measures f' or λ' , c = f' λ'
- Expect f' > f since more wave crests are being crossed by Observer S'due to its approach direction than if it were at rest w.r.t source S

Relativistic Doppler Shift

Examine two successive wavefronts emitted by S at location 1 and 2

In S' frame, T' = time between two wavefronts

In time T', the wavefront moves by cT' w.r.t 1

Meanwhile Light Source moves a distance vT'

Distance between successive wavefront $\lambda' = cT' - vT'$

use $f = c / \lambda$ $f' = \frac{c}{(c-v)T'}$, $T' = \frac{1}{\sqrt{1-(v/c)^2}}$ Substituting for T', use f=1/T \Rightarrow f' = $\frac{\sqrt{1 - (v/c)^2}}{1 - (v/c)} f$ \Rightarrow f' = $\frac{\sqrt{1+(v/c)}}{\sqrt{1-v/c}}$ f better remembered as: $f_{obs} = \frac{\sqrt{1+(v/c)}}{\sqrt{1-(v/c)}} f_{source}$ $f_{obs} =$ Freq measured by observer approching light source