Physics 2C Waves and Thermodynamics


## Class Schedule

- Lectures
- Mon. Wed. 3:00-3:50 pm WLH 2001
- Tue. 8:00-8:50 pm Center 101
- Quizzes
- Fri. 3:00-3:50 pm WLH 2001
- Problem Session
- Thu. TBA


## Course Information

Course Syllabus on the web page http://physics.ucsd.edu/ students/courses/spring2009/physics2c/

Instructor: Mel Okamura - mokamura@physics.ucsd.edu
Office: 1218 Mayer Hall
Office Hrs. Th 2-3 pm or by appointment
Teaching Assistant:Xiang Yang (betterfutureyx@gmail.com)
Office:
Office Hrs:TBA
Text. Physics for Scientists and Engineers, Wolfson and Pasachd $3^{\text {rd }}$ edition. Volume III. UCSD custom edition.

## Grades

- Weekly quizzes (8) will be held on Friday. You are allowed to drop 2 quizzes. There will be no make-up quizzes.
- Final exam covering the whole course.
- The final grade will be based on Quizzes $60 \%$ (best 6 out of 8 quizzes) Final exam 40\%


## Homework

- Homework will be assigned each week.
- Homework will not be corrected but quiz questions will resemble the homework.
- Solutions to the homework problems will be posted on the web page.


## Course Outline

- Waves

6 weeks

- Sound
- Light
- Optics
- Thermodynamics 4 weeks
- Fluids
- Heat
- Energy and Entropy


## Waves

- A Wave is a disturbance that carries energy from one place to another but does not carry mass
- Wave propagation
- Transverse waves
- Longitudinal waves
- Wave form
- Pulsed wave
- Sinusoidal (continuous) waves
- Media
- Mechanical waves ( propagate through matter) - sound
vibration on a string
- Electromagnetic waves ( propagate through vacuum)
- light
- microwaves
- radio waves



## Transverse and Longitudinal Waves

- The transverse and longitudinal waves depend on different mechanical properties of the material.
- The speed of the transverse and longitudinal waves are different.
- Example. earthquakes



## Seismograph record



Time difference $\Delta \mathrm{t} \sim 10 \mathrm{~s}$.
distance from earthquake $=\mathrm{K} \Delta \mathrm{t}$ where $\mathrm{K} \sim 8 \mathrm{~km} / \mathrm{s}$ (derive this) d $\sim 80 \mathrm{~km}$

## Wave properties

-Mathematical description of waves
-Wave pulse
-Sinusoidal waves
-Wave speed
-Wavelength
-Frequency


## Wave velocity

- The equation

$$
y=f(x-v t)
$$

describes a wave traveling to the right (positive direction)

- A wave traveling to the left (negative direction) is described by the equation

$$
y=f(x+v t)
$$

Simple Harmonic Waves


Generated by simple harmonic motion


The oscillation follows a sinusoidal


The projection of the rotating vector $A$ on the $x$ axis gives

$$
x=A \cos \left(\frac{2 \pi}{T} t\right)=A \cos (2 \pi f t)=A \cos (\omega t)
$$

$\theta$ is the phase angle
f is the frequency (cycles/s)
$\omega$ is the angular frequency (radians/s)


## Other forms

For a wave with displacement $=0$ at $\mathrm{t}=0, \mathrm{x}=0$

$$
y=A \sin (k x \pm \omega t)
$$

General form including initial phase shift $\varphi$

$$
y=A \cos (k x \pm \omega t+\phi)
$$

## Physlets

Some animations that can give some physical insight into wave motion.
http://www.surendranath.org/applets/waves/twave01a/twav e01aapplet.html

## Example 16.1

A surfer paddles out on the water to where the waves are sinusoidal with crests 14 m apart. She rises a vertical distance 3.6 m from trough to crest, a process that takes 1.5 s . Find the wave speed and write the equation for the wave. Take the wave crest to be at $\mathrm{x}=0$ at $\mathrm{t}=0$ with the positive $x$ direction toward the open ocean.

