

Heat is a form of energy

Mechanical work done on a system produces a rise in temperature like heat added to the system.

First Law of Thermodynamics
The change in the internal energy of a system U, is equal to the heat input Q minus the work done by the system.
Calorimetry

Mechanical equivalent of heat

$$
\text { 1 calorie }=4.184 \mathrm{~J}
$$

$$
\Delta \mathrm{U}=\mathrm{Q}-\mathrm{W}
$$

System
The internal energy is the energy stored in the system. For an ideal gas the internal energy is the kinetic energy of the gas

Thermodynamic processes in an

 ideal gas

State $1\left(\mathrm{P}_{1}, \mathrm{~V}_{1}, \mathrm{~T}_{1}\right) \quad$ State $2\left(\mathrm{P}_{2}, \mathrm{~V}_{2}, \mathrm{~T}_{2}\right)$

- The state of the ideal gas is determined by the three parameters,

PVT.

- A thermodynamic process is the transition between states with input or output of heat and work with changes in internal energy.
- The internal energy U is a property of the state. ΔU determined by the initial and final state and is independent of path
- The heat absorbed and work done in the process depend on the path.

PV diagram

Each point in the diagram represents a State of the system
The temperature T is not plotted but is not an independent variable.
T can be calculated from P and V using the ideal gas law.
The points of constant temperature on the PV diagram are hyperbola

$$
P=\frac{n R T}{V} \quad \text { For constant } T
$$

Work can be calculated if the process is reversible.

We can calculate the work done in going from 1 to 2 if the change is a reversible process. i.e. it goes slowly through well defined states that are in quasi-equilibrium.

Reversible process

The temperature is changed very slowly so that the gas sample is at a uniform temperature.

Work cannot be calculated for an irreversible process.

We cannot calculate the work done in going from 1 to 2 if the process is irreversible. i.e. goes rapidly through states that are not well characterized and not in quasi-equilibrium. However, we can determine ΔU, since this is a state property.

Isothermal volume change

T is constant U is constant

$$
\begin{array}{cl}
\Delta \mathrm{U}=0 & \text { All the heat goes } \\
\mathrm{W}=\mathrm{Q} & \text { into work }
\end{array}
$$

Work
$W=\int_{V_{1}}^{V_{2}} P d V=\int_{V_{1}}^{V_{2}} \frac{n R T}{V} d V$
$P=\frac{n R T}{V}$

$\mathrm{W}=\mathrm{nRT} \ln \mathrm{V}_{2}-\mathrm{nRT} \operatorname{In} \mathrm{V}_{1}$
$W=n R T \ln \frac{V_{2}}{V_{1}} \quad \begin{aligned} & \text { Expansion } \frac{V_{2}}{V_{1}}>1 \begin{array}{l}\text { Compression is positive } \frac{V_{2}}{V_{1}}<1\end{array} \begin{array}{l}\text { work is negative } \\ \text { work is done by the gas }\end{array}\end{aligned}$ work is done on the gas

Constant Volume

$$
\begin{aligned}
& \text { At constant volume } \\
& \begin{array}{l}
\mathrm{W}=0 \\
\quad \mathrm{U}=\mathrm{Q}
\end{array} \\
& \text { no work is done all the heat goes } \\
& \text { into internal energy } \\
& \text { We can use this to find } \Delta \mathrm{U} \\
& \qquad \mathrm{Q}=\mathrm{nc}_{\mathrm{v}} \Delta \mathrm{~T} \\
& \Delta \mathrm{U}=\mathrm{nc}_{\mathrm{V}} \Delta \mathrm{~T} \quad \begin{array}{l}
\text { This is true for all processes since } \mathrm{U} \text { is a State } \\
\text { function and only dependent on } \mathrm{T} .
\end{array}
\end{aligned}
$$

specific heat at constant volume
$c_{v}=\frac{\Delta U}{n \Delta T} \quad \begin{aligned} & \text { the specific heat of the gas } c_{v} \text { depends } \\ & \text { on the structure of the gas molecule. }\end{aligned}$
Units J/mole.K

Adiabatic compression

The air ($\gamma=1.40$) in an automobile engine is compressed quickly so that appreciable heat exchange does not occur. For a compression ratio $\mathrm{V}_{1} / \mathrm{V}_{2}=10$. Find the work done in compressing a gas from 1atm if the capacity is 2.8 I .

Constant Pressure

Constant Pressure
Work
$W=\int_{V_{1}}^{V_{2}} P d V=P\left(V_{2}-V_{1}\right)=P \Delta V$
Heat input
$Q=\Delta U+P \Delta V$
$\mathrm{Q}=\mathrm{nc}_{\mathrm{v}} \Delta \mathrm{T}+\mathrm{P} \Delta \mathrm{V}=\mathrm{nc}_{\mathrm{v}} \Delta \mathrm{T}+\mathrm{nR} \Delta \mathrm{T}$
$Q=n c_{p} \Delta T$

Specific heat at constant pressure, c_{P}

$$
C_{P}=C_{V}+R \quad \begin{aligned}
& \text { the specific heat at constant } P \text { is larger } \\
& \text { than the specific heat at constant } V .
\end{aligned}
$$ because work is done by the gas

Temperature change in expansion

One mole of air $(\gamma=1.40)$ at $\mathrm{P}_{1}=0.25 \mathrm{~atm}, \mathrm{~T}_{1}=300 \mathrm{~K}, \mathrm{~V}_{1}=0.1 \mathrm{~m}^{3}$ expands by a factor of 2 . Find the temperature change if the expansion is a) isobaric, b) isothermal c) adiabatic. Which process
produces the highest temperature rise?

Work done in expansion

One mole of air $(\gamma=1.40)$ at $P_{1}=0.25 \mathrm{~atm}, \mathrm{~T}_{1}=300 \mathrm{~K}$, $V_{1}=0.1 \mathrm{~m}^{3}$ expands by a factor of 2 . Find the work done if the expansion is a) isobaric, b) isothermal c) adiabatic. Which process does the most work?

Heat input on expansion
One mole of air $(\gamma=1.40)$ at $\mathrm{P}_{1}=0.25 \mathrm{~atm}, \mathrm{~T}_{1}=300 \mathrm{~K}$,
$V_{1}=0.1 \mathrm{~m}^{3}$ expands by a factor of 2 . Find the heat input if
the expansion is a) isobaric, b) isothermal c) adiabatic.
What process results in the largest heat input? $c_{v}($ air $)=5 / 2 R$

v

