8.2 Temperature and Heat

Phase Transitions
Ideal gas Law
Kinetic Theory of the Ideal gas

Phase diagram for ice

Ice is less dense than water
Increasing pressure lowers the freezing point
Pressure causes ice to melt.
Water at the bottom of lakes does not freeze in winter.

Heat of transformation is reversible

Heat is absorbed on melting
Heat is released on solidification

Solar Heat Storage

David Allen's Solar Home in Utah www.allanstime.com/SolarHome/

Glauber's Salt . Melting point 90° F. $\mathrm{L}_{\mathrm{f}}=83$ calories/g

Solar heat is used to melt salt during the day
Heat is released during freezing at night to
heat the house.

Salt Chamber

Heat of fusion RAIN $<$ BIRD.
 TECH TIP

Frost Protection By Sprinkling

Heat released when water freezes can be used to save crops from freezing.

Heat of evaporation

Heat of vaporization provides energy for hurricanes.

Thermal power
Consider 1 inch of rain falling in an area
of $1 \mathrm{~km}^{2}$. Calculate the thermal energy released
$\mathrm{Q}=\mathrm{mL}_{\mathrm{v}}=\rho \mathrm{AhL}_{\mathrm{v}}$

$=\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(10^{3} \mathrm{~m}\right)^{2}(.025 \mathrm{~m})\left(2257 \times 10^{3} \mathrm{~J}\right)$
$=6 \times 10^{13} \mathrm{~J}$
energy equivalent to 4×10^{5} gallons of gasoline.

Gas Constant

The ideal gas law can also be written in terms of the n the number of moles of gas.

$$
\mathrm{PV}=\mathrm{nRT}
$$

Where
$\mathrm{R}=\mathrm{N}_{\mathrm{A}} \mathrm{k}_{\mathrm{B}}=$ Universal Gas Constant
$\mathrm{N}_{\mathrm{A}}=$ Avogadro's number, the number of molecules in a mole $=6.02 \times 10^{23}$
$\mathrm{n}=$ number of moles of gas
$\mathrm{T}=$ Temperature (K)

Properties of the idea gas

Question

You are taking a road trip for the weekend. Before you start you check the pressure in your tire and the gauge reads $31 \mathrm{lbs} / \mathrm{in}^{2}\left(214 \mathrm{kPa}\right.$) and the temperature is $15^{\circ} \mathrm{C}$. After a few hrs of driving you check your tires pressure again and the gauge now reads $35 \mathrm{lb} / \mathrm{in}^{2}(241 \mathrm{kPa})$. What is the temperature in the tire now?

Kinetic theory of the ideal gas

The kinetic theory of the ideal gas is a statistical mechanical theory to explain the thermodynamic properties of the gas based on the microscopic properties.

We use classical Newtonian mechanics for a large number of particles in a box, to calculate the pressure.

Model for the ideal gas

1. All collisions are elastic, conserving energy and momentum 2. Movement of molecules is random. No preferred direction.
2. Large \# of identical molecules of mass m, no structure, no size.
3. All energy in the gas exists in form of kinetic energy of its molecules.

Force at the wall

The force exerted at the wall is due to the change in momentum

Change in momentum

$$
\Delta \mathrm{p}_{\mathrm{x}}=2 \mathrm{mv} \mathrm{v}_{\mathrm{x}}
$$

Force

$$
\mathrm{F}_{\mathrm{x}}=\frac{\Delta \mathrm{p}_{\mathrm{x}}}{\Delta \mathrm{t}}
$$

Time between collisions with the wall

$$
\Delta t=\frac{2 \ell}{v_{\mathrm{x}}}
$$

time to make a round trip from wall to wall

Calculate the pressure

Force due to all molecules

$$
F=\sum_{N} f_{i}=\sum_{N} \frac{2 m v_{x}}{2 \ell / v_{x}}=\sum \frac{m v_{x}^{2}}{\ell}=N \frac{m}{\ell} \overline{v_{x}^{2}}
$$

Pressure

$$
\begin{gathered}
\mathrm{P}=\frac{\mathrm{F}}{\mathrm{~A}}=\mathrm{N} \frac{\mathrm{~m}}{\mathrm{~A} \ell} \overline{\mathrm{v}_{\mathrm{x}}^{2}}=\frac{\mathrm{Nm}}{\mathrm{~V}} \overline{\mathrm{v}_{\mathrm{x}}^{2}} \\
\mathrm{PV}=\mathrm{Nm} \overline{\mathrm{v}_{\mathrm{x}}^{2}}
\end{gathered}
$$

Connect to the ideal gas law

$$
\begin{aligned}
& \qquad \mathrm{PV}=\mathrm{Nm} \overline{\mathrm{v}_{\mathrm{x}}^{2}} \\
& \text { becomes } \\
& \mathrm{PV}=\frac{1}{3} \mathrm{Nm} \overline{\mathrm{v}^{2}} \\
& \text { From the ideal gas Law } \\
& \mathrm{PV}=\mathrm{NkT}
\end{aligned}
$$

gives a microscopic value for the thermal energy

$$
\frac{1}{2} m \overline{v^{2}}=\frac{3}{2} \mathrm{kT} \quad \begin{aligned}
& \text { The average kinetic energy } \\
& \text { of a gas molecule is } \\
& \text { proportional to the absolute } \\
& \text { temperature }
\end{aligned}
$$

Thermal speed

The thermal speed is dependent on T and the mass of the molecule.

$$
\mathrm{v}_{\mathrm{t} \mathrm{t}}=\sqrt{\frac{3 \mathrm{kT}}{\mathrm{~m}}}
$$

Ideal gas

For 2 gas samples with different molecular masses at the same temperature T

- The kinetic average energy of the gas molecules are equal
- The average velocities of the gas molecules are different. The gas with the larger mass has a slower velocity
- The kinetic energy increases linearly with the absolute T .

Question

Compare the thermal velocities of a molecule of N_{2} and He (Molecular mass $28 \mathrm{~g} / \mathrm{mole}, 4$ $\mathrm{g} / \mathrm{mole}$) at 300 K

Question

Room temperature (about 293 K) is only about 6.5% higher than a typical refrigerator temperature (275 K). Yet in a refrigerator the rate of typical chemical and biological reactions is greatly reduced. To show the importance of the high energy tail of the Maxwell-
Boltzmann distribution in food spoilage calculate the ratio of the no
of oxygen molecules with a speed of $1350 \mathrm{~m} / \mathrm{s}-1351 \mathrm{~m} / \mathrm{s}$ at 293 K
and 273 K . How does it compare to the 6.5% increase in T.

