Temperature and Heat 8.1

Temperature Heat Heat capacity Phase change heat of fusion heat of vaporization

Heat and Temperature

- Heat is a quantity of thermal energy. The amount of heat depends on the size of the object
- Temperature is the measure of the "strength" or "pressure" of thermal energy.
- The Temperature level does not depend on the size of the object

Heat flows into the object and raises the temperature

Thermal equilibrium

- · Two objects in thermal contact until no changes occur are in thermal equilibrium and have the same Temperature.
- If an object A is in thermal equilibrium with an object B and object B is in thermal equilibrium with object C then A and C are in thermodynamic equilibrium with each other.

Specific heats				
Substance	SI J/kgK	cal/gºC		
Aluminum	900	0.215		
Copper	386	0.0923		
Iron	447	0.107		
glass	753	0.18		
Water	4184	1.00		
Ice(-10°C)	2050	0.49		
Wood	1400	0.33		

The energy content of food is given in kilocalories C. A glass of beer has a energy content of 150 C. If this beer is drunk by a 75 kg UCSD student during the Sun God festival what would be the temperature rise assuming all the energy was converted to heat and the student's heat capacity was that of water.

Phase change

- Heat can provide thermal energy to change the phase of a material. The energy is required to break interactions between atoms.
- Fusion Change from solid to liquid
- Vaporization Change from liquid to gas
- Sublimation- Change from solid to gas.

Heat of transformation

· Latent heat of fusion (solid to liquid)

 $Q = L_f m$

• Latent heat of vaporization (liquid to gas)

 $Q = L_v m$

L _f (kJ/kg)	L _v (kJ/kg)
334	2257
109	879
205	4726
11.3	296
	334 109 205 11.3

