
7.2 Fluids

Buoyancy Fluid dynamics I. Principles

Archimedes Principle

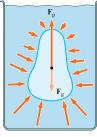
When an object is placed in a fluid the fluid exerts a buoyant force on the object that tends to oppose the gravitational force.

The buoyant force is equal to the weight of the fluid displaced

Pressure force on fluid at equilibrium

The force of pressure on the surface of the fluid section (in dotted lines) ${\sf F}_{\sf p}$ is equal to the weight of the fluid ${\sf F}_{\sf g}$

net force is zero


The buoyant force is F_p the weight of the displaced fluid

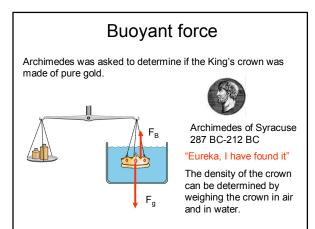
Buoyant force on an object in a fluid

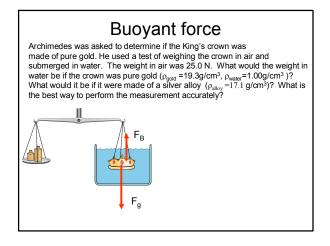
Now remove the fluid and place an object in the space of the displaced fluid.

The net force on the object is the difference between F_p and the weight F_{α}

Here the object floats because Fp is greater than the weight

(b)


Question


An ice cube floats in a glass of water. What fraction of the ice cube is under the surface of the water? (ρ_{ice} =0.92 kg/m³, ρ_{water} =1.00 kg/m³

Question

A glass of water containing an ice cube is full to the brim. What will happen to the water level when the ice melts?

- a) rise
- b) lower
- c) remain the same

Question

A spherical rubber balloon with mass 1.6 g and diameter of 20 cm is filled with helium (density 0.18 kg/m³). How many 0.4 g paper clips can you hang from the balloon before it loses its buoyancy? (density of air is 1.2 kg/m³)

Fluid Dynamics

- Fluid dynamics is the study of fluids in motion.
- The fluid is characterized by the velocity, and pressure in different parts of the fluid.
- Fluid dynamics has important applications such as aerodynamics of flight.

Fluid Dynamics Fluid flow is described by velocity vectors or continuous streamlines Velocity vectors Streamlines

Steady flow

- For steady flow the streamlines don't change with time
- For unsteady flow the streamlines change with time.


Continuity Equation Conservation of mass in a flow tube In a time Δt the same amount of mass must pass into the tube (at A_1) as leaves the tube (at A_2) $m = \rho_1 A_1 v_1 \Delta t \\ m = \rho_2 A_2 v_2 \Delta t$ For a constant density, i.e. liquid $A_1 v_1 = A_2 v_2$ (b) For a smaller area the flow velocity must be larger

Question

A 1.0 inch hose is constricted by a nozzle to a diameter 4 times smaller. By how much is the velocity of the water increased at the nozzle.

- a) 1.5 times
- b) 2 times
- c) 4 times
- d) 16 times.

