5.3 Interference and Diffraction

Coherence
Two-Slit Interference
Multiple-slit Interference

Interference
- Interference effects are a characteristic feature of waves.
- Interference of light shows that light has wave properties.
- The interference of light waves is shown most clearly when light interacts small objects.
- Interference effects have many applications, CDs, x-ray crystallography.

Coherence

For two waves to show interference they must have coherence.

Two waves are coherent if one wave has a constant phase relation to the other.

\[\phi = 2\pi \frac{\Delta x}{\lambda} \]

Interference

Interference results from superposition of waves.

Destructive Interference
Out of phase
Phase shift of \(\pi \), 180°

Constructive Interference
In phase
Zero phase shift

Interference in two dimensions

Coherent waves
Interference pattern
constructive interference
destructive interference
black maxima
white minima
grey zero
Young's two slit experiment

Thomas Young

shows that light shows interference effects.

Light has wave properties.

Interference of light waves from the two slits.

Pathlength difference = \(d \sin \theta \)

Pathlength differences lead to constructive and destructive interference

Maxima

constructive interference

\[d \sin \theta = m\lambda \]

Dark

destructive interference

\[d \sin \theta = (m + 1/2)\lambda \]

\(m \) is the order of the peak, i.e. \(m^{th} \) order peak

Wavelength of light

\[d \sin \theta \approx d \tan \theta = \frac{dy}{L} \]

\(y \) for small angles \(\theta \)

Maxima

\[y = \frac{m \lambda}{d} \]

Dark

\[y = \frac{(m + 1/2) \lambda}{d} \]

Question

Light from a laser is passed through two slits a distance of 0.10 mm apart and is hits a screen 5 m away. The separation between the central maximum and the first bright interference fringe is 2.6 cm. Find the wavelength if the light.

Question

In a two slit interference experiment how does the distance between the peaks on the screen change if the distance between the slits is increased?

a) increases

b) decreases

c) stays the same

d) indeterminate
Question

In a two slit interference experiment how does the distance between the peaks on the screen change if the wavelength of the light is increased?

a) increases
b) decreases
c) stays the same
d) indeterminate

Intensity

- When two waves are superimposed the amplitude is equal to the sum of the amplitudes of the two waves.
- The intensity of the wave is proportional to the square of the amplitude.

Intensity profile

The superposition of light from 2 slits gives a sinusoidal intensity profile (for the case where the slit width is much smaller than d).

Multiple slits

As the number of slits having the same separation increases the position of the maxima remains the same but the width of the peak decreases.

For multiple slits, destructive interference requires a smaller phase shift (smaller angle)

For 3 slits destructive interference is observed when the phase shift is $2\pi/3$ instead of $2\pi/2$ (for 2 slits).

Phasor Addition

The phasor is a useful tool to describe the superposition of sine waves with different phases.

Phasors add like vectors
Interference

- Two phasors: $\Delta \varphi = \pi$
- Three phasors: $\Delta \varphi = 0$, $\Delta \varphi = 2\pi/3$, $\Delta \varphi = 2\pi$

Intensities due to multiple slits

- Destructive interference when m' is an integer not a multiple of $N = \text{no. of slits}$.
- Constructive interference when m' is an integer multiple of $N (m = m'N)$.

Diffraction grating

- A diffraction grating has a large number of slits N.
- As N gets large, the width of the peak gets narrow, Δ/N.
- The amplitude of the peak increases with N.
- The diffraction grating is useful for resolving closely spaced wavelengths of light.

Resolution

Two different wavelengths of light can be resolved if the peak of one is at the first minimum of the second.

- Minimum for mth order: λ, peak
- Maxima for mth order: λ' peak

$$d \sin \theta_{\text{min}} = (m + \frac{1}{N}) \lambda$$
$$d \sin \theta_{\text{max}} = m \lambda' = m(\lambda + \Delta \lambda)$$

Spectrometer

- 2nd-order spectrum
- 1st-order spectrum
- Screen
- Entrance slit
- Light source

- Resolving Power: $\frac{\lambda}{\Delta \lambda} = mN$
Question 65

A 400 line/mm diffraction grating is 3.5 cm wide. Two spectral lines whose wavelengths average to 560 nm are just barely resolved in the 4th order spectrum of this grating. What is the difference between their wavelengths?