5.2 Optical Instruments

- Optical Instruments
 - -the eye
 - -camera
 - -Magnifiers and microscopes
 - -Telescopes

Optical systems

 For systems of several mirrors and lenses the image formed by one element serves as the object for the next element.

Camera The camera forms a real inverted image of an object at the image plane of the film (digital light sensors) Object

Limitations of Lens

- Spherical aberration
- · Chromatic aberration
- F-number

Defects in vision

Nearsightedness and farsightedness – due to the mismatch between the focal length of the eye and the distance between lens and retina.

Power of a corrective lens

Prescription eyeglass lenses are specified by the power P

$$P = \frac{1}{f}$$
 Units of m-1 or diopters

Farsightedness Lack of near vision 25 cm Weat point Unifocused Farsighted eye cannot focus on an object at the near point of a normal eye. The lens-retina distance is too short and/ or the lens is not convergent enough.

Magnifiers

How do we image small objects?

- We can image a small object by bringing it close to our eye.
- But we cannot bring it closer than the near point. (we can't focus on it).
- Alternatively we can produce a larger image of the object at the near point (or farther away) that can be focused on by the eye.

Angular magnification

Angle subtended by the object (small angle approx. radians)

$$\alpha = \frac{h}{25cm}$$

$$\beta = \frac{h}{\textbf{f}}$$

the object close to the eye.

$$m = \frac{\beta}{m} = \frac{25cm}{f}$$

Question

What a magnifying glass with a focal length of 10 cm is used. What is the magnification?

Compound Microscope

A compound microscope magnifies the image of small objects using 2 lenses.

- Objective lens forms an enlarged real image
- Eyepiece lens forms an enlarged virtual image that is visualized by the eye. (as with the magnifying glass)

Question

Find the magnification of a compound microscope with focal lengths for the objective and eyepiece of 6.1 mm and 1.7 mm respectively and the lenses are 8.3 cm apart?

Refracting telescope

A refracting telescope collects light from distant objects and form an image with a large angular magnification using 2 lenses

- Objective lens forms a real image of the far away object near the focal length
- Eyepiece views the image like a magnifier.

Telescope

The Hubble space telescope has an objective mirror with a focal length of 57.8 m viewed with optics equivalent to an eyepiece with a focal length of 7.2x10⁻³m What is the angular magnification?

$$m = \frac{f_o}{f_e} = \frac{57.8}{7.2x10^{-3}} = 8.0x10^3$$

Hubble Telescope Image of M100 Spiral Galaxy (NASA)

Limits to magnification

- For refracting optics there are problems of chromatic and spherical aberration.
- Problems in precision in constructing the refracting and reflecting surfaces.
- Diffraction A basic problems having to do with the wave nature of light (discussed next)