Image Formation 5.2

Image formation by lenses Convex lenses Concave lenses

Image formation by lenses

- Images can be formed by lenses that divert light rays by refraction.
- Convex, converging lenses form real images and virtual images- like concave mirrors.
- Concave, diverging lenses only form virtual images, like convex mirrors.
- We discuss the ideal case of thin lenses, i.e. paraxial rays. Real lenses show distortions due to spherical aberration and chromatic aberration.

Question

A double convex lens is made out of glass with a refractive index of 1.75. If the radius of curvature of the two surfaces were the same what radius would give a lens with a focal length of f=25 cm?

Focusing by a converging lens

Ray tracing for lenses

- A line parallel to the lens axis passes through the focal point
- A line through the center of the lens passes through undeflected.

Images formed by a converging lens

Image formed by a converging lens

http://micro.magnet.fsu.edu/primer/java/lenses/converginglenses/index.html

Question

How will an object viewed through a converging lens appear as the lens is brought closer to the object?

Image formed by a diverging lens http://micro.magnet.fsu.edu/primer/java/lenses/diverginglenses/index.html

Question

How will the image of an object formed by a diverging lens change as the lens is brought closer to the object?

Question

A converging lens with a focal length of 10 cm is placed 30 cm in front of a candle. Find the image distance. Find the magnification.

Question

A candle and a screen are 70 cm apart.

Find two points between the candle and screen where you could put a convex lens with a 17 cm focal length to give a sharp image of the candle on the screen.

Find the magnification at the two positions.

Projector lens

Suppose you want to project the image of a transparency 35 mm high on to a screen that is 1.5 m high using a lens with a focal length of 10 cm. Where would you position the film? How far from the lens would you place the screen?

Camera The camera is the inverse of the projector. The image and object are reversed

Spherical Aberration

non-paraxial rays

paraxial rays

Chromatic Aberration

