Image formation 4.3

- Images
 - -real image
 - -virtual image
- Image formation by mirrors, ray tracing
 - -plane mirror
 - -convex mirror
 - -concave mirror
- Mirror equation

Object-Image

- A physical object is usually observed by reflected light that diverges from the object.
- An optical system (mirrors or lenses) can produce an image of the object by redirecting the light.
 - Real Image
 - Virtual Image

Parabolic Reflector

Parabolic mirrors can be used to focus incoming parallel rays to a small area or to direct rays diverging from a small area into parallel rays.

Spherical mirrors

- · Spherical mirrors can be used ot form images
- Spherical mirrors are much easier to fabricate than parabolic mirrors
- A spherical mirror is an approximation of a parabolic mirror for small curvatures. (i.e. for paraxial rays –close to parallel to the optic axis.
- Spherical mirrors can be convex or concave

Ray tracing with spherical mirrors

- 1. A ray parallel to the mirror axis reflects through the focal point, **F**.
- A ray passing through the focal point reflects parallel to the mirror axis
- 3. A ray striking the center of the mirror reflects symmetrically around the mirror axis
- 4. A ray that passes through the center of curvature ${\bf C}$ reflects and passes back through itself

Concave mirrors

Simulation of image formation with concave mirrors

http://micro.magnet.fsu.edu/primer/java/scienceopticsu/mirrors/concave.html

Question

What image of yourself do you see when you move toward a concave mirror?

Convex mirror

Simulation of image formation with convex mirrors

http://micro.magnet.fsu.edu/primer/java/scienceopticsu/mirrors/convex.html

Question

Describe how your image would appear as you approach a convex mirror?

Mirror equation. Special cases

$$\frac{1}{\ell} + \frac{1}{\ell'} = \frac{1}{f}$$

When f > 0 concave mirror

$$\ell = \mathsf{infinity}$$
 $\ell' = f$ Real Image

$$\ell=2f \qquad \qquad \ell\,'=2f$$

$$\ell = f \qquad \qquad \ell' = \text{ infinity}$$

Question

A boy stands 2.0 m in front of a concave mirror with a focal length of 0.50 m. Find the position of the image. Find the magnification. Is the image upright or inverted?

Question

At what two distances could you place an object from a 10 cm focal length concave mirror in order to get an image 2 times the size of the object?

Question

When viewed from the earth the moon subtends an angle of 0.5 degrees. How large an image of the moon will be formed by the 3.6 m diameter Hawaiian telescope which has a focal length of $8.5\ m.$