

Speed of sound in water

$$\begin{aligned} \rho_{water} &= 1000 \text{kg/m}^3 \\ B_{water} &= 2 \times 10^9 \text{Pa} \\ v &= 1500 \text{m/s} \end{aligned}$$
Speed of sound in water is about 5 times that in air.
the higher bulk modulus compensates for the higher

density

Problem

The threshold of hearing is a sound intensity of about $1x10^{-12}$ W/m². What is the maximum displacement of a sound wave in air at a frequency of 1000 Hz at this intensity? (ρ_{air} =1.2 kg/m², speed of sound =340 m/s)

