Sound
2.1

Sound Waves
Speed of Sound
Intensity of Sound
Reflection of waves

Sound Waves

- Longitudinal waves – displacement in direction of propagation
- The displacement produces pressure differences due to differences in density

Pressure and Displacement out of phase by $\pi/2$ (90°)

Pressure is related to the slope of the displacement

An instructive simulation of sound wave

http://www.kettering.edu/~drussell/Demos/waves/wavemotion.html

Pressure

$P = \frac{F}{\text{Area}}$ Newton/m2 Pascals

Compression increases pressure

$\Delta P = B \frac{\Delta V}{V} = B \frac{\Delta x}{x}$

Bulk modulus - B

Units of B - Pascals
Speed of sound

\[v = \sqrt{\frac{B}{\rho}} \]

for a solid and liquid

\[\Delta P = B \frac{\Delta V}{V} \]

\(B \) is the bulk modulus

F compresses gas and changes speed.

\[F = ma \]

\[F = \Delta PA = \rho A \Delta V \left(\frac{\Delta V}{\Delta t} \right) \]

\[v = \frac{\Delta P}{\rho \Delta V} \] but \[\frac{\Delta V}{\Delta t} = \frac{\Delta V}{\Delta t} \]

\[v^2 = \frac{\Delta PV}{\sigma \Delta V} = \frac{B}{\sigma} \]

Speed of sound in a gas

The bulk modulus for slow compression of a gas is equal to \(P \).

However, a sound wave compresses the gas quickly so that there is a temperature rise. (Adiabatic compression). For this case the bulk modulus is slightly larger by a factor of \(\gamma \) which varies according to the nature of the gas.

Speed of sound in air

- Air is a mixture of mostly diatomic gases. 80\% \(\text{N}_2 \), and 20\% \(\text{O}_2 \)

\[\rho_{\text{air,20C}} = 1.20 \text{kg/m}^3 \]

\[P_{\text{air,20C}} = 1.01 \times 10^5 \text{ Pascals} \]

\[v = \sqrt{\frac{7 \times (1.0 \times 10^5)}{5(1.20)}} = 343 \text{ m/s} \]

- monatomic gas –He 5/3
- diatomic gas \(\text{O}_2 \), \(\text{N}_2 \) 7/5
- triatomic \(\text{CO}_2 \) 4/3
Speed of sound in water

\[\rho_{\text{water}} = 1000 \text{kg/m}^3 \]
\[B_{\text{water}} = 2 \times 10^9 \text{Pa} \]
\[v = 1500 \text{m/s} \]

Speed of sound in water is about 5 times that in air. The higher bulk modulus compensates for the higher density.

Donald Duck Talk

\[f = \frac{v}{\lambda} \]

Demonstrates the speed of sound in He is faster than in air. The wavelength of speech is governed by the length of the vocal cavity.

- He = 4 gm/mole (monatomic)
- Air ~ 30 gm/mole (diatomic)

\[V_{\text{sound, He}} \approx 3 V_{\text{sound, air}} \]

Intensity of sound

average power is the energy in one wavelength / period

\[P_w = \frac{\rho Av^2}{T} \]

For a harmonic oscillator the average KE is equal to the average PE so the total energy is

\[2xKE = mv^2 \]

\[s = s_0 \cos(kx - \omega t) \]
\[dm = \rho A dx \]
\[v^2 = \omega^2 s_0^2 \sin^2(kx - \omega t) \]

Two expression for the intensity

Sound Intensity and Hearing

- The human ear can perceive changes in sound intensity over a wide range of intensities. (12 orders of magnitude)
- The perception of sound is not linear but logarithmic.
- The decibel scale is a logarithmic scale of intensities that is useful for characterizing sound.

\[P_w = \int_0^T \frac{dmv^2}{T} = \rho A \omega^2 s_0^2 \int_0^T \sin^2(kx - \omega t) dx \]
\[= \frac{\rho A \omega^2 s_0^2 \lambda}{2T} \]

divide by A to get intensity

\[I_{av} = \frac{1}{2} \frac{\rho A \omega^2 s_0^2 \lambda}{2T} \]

also

\[I_{av} = \frac{\Delta P_o^2}{2\rho v} \]

see text.

Problem

The threshold of hearing is a sound intensity of about \(1 \times 10^{-12}\) W/m². What is the maximum displacement of a sound wave in air at a frequency of 1000 Hz at this intensity? (\(\rho_{av} = 1.2 \text{ kg/m}^2\), speed of sound = 340 m/s)
Decibel
The unit of decibels β is a logarithmic description of sound intensity.

$$\beta = 10 \log \frac{I}{I_0}$$

$I_0 = 10^{-12} \text{W/m}^2$

- β is dimensionless, and increases as the log of the intensity
- I_0 is the threshold for hearing.

Hearing
Hearing covers a wide dynamic range of intensities. The maximum sensitivity is around 3 kHz. Low frequency vibrations require higher intensities.

Question
The ear perceives changes in loudness by a factor of 2 for a 10 dB change in intensity. What is the intensity that is 4 times louder than an intensity of 10^{-8}W/m^2?

a) 10^{-7}W/m^2

b) 10^{-6}W/m^2

c) 10^{-5}W/m^2

d) 10^{-4}W/m^2

Reflection of waves
Waves are reflected at a boundary.

- The wave cannot propagate across the boundary.

Partial Reflection at the boundary

- Reflections are important to understand properties of waves in different media, i.e. partial reflection of light by glass.
- Standing waves that are the basis for musical instruments are formed by wave reflection.