Formula sheet

Constants and Factors

Speed of light: c = 299,792,458 m/s exactly (about $3 \times 10^8 \text{ meters/sec}$) Newton's constant $G = 6.67 \times 10^{-11} \text{ m}^3/\text{s}^2 \text{ kg}$ Coulomb constant $k = 1/(4\pi\epsilon_0) = 9 \times 10^9 \text{ N} \text{ m}^2/\text{C}^2$, $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N} \text{ m}^2$ Charge on electron $q_e = -1.6 \times 10^{-19} \text{ C}$ Mass of proton and neutron about $1.67 \times 10^{-27} \text{ kg}$ Mass of electron: $m_e = 9.11 \times 10^{-31} \text{kg}$ Permeability constant: $\mu_0 = 4\pi \times 10^{-7} \text{N/A}^2$ **1** dyne = 10^{-5} Newtons

Formulas

Coulomb law: $\vec{F}_{12} = \frac{kq_1q_2}{r^2}\hat{r}$ Electric field: $\vec{E} = \vec{F}/q = \frac{kq}{r^2}\hat{r}; \ \vec{E} = \int d\vec{E} = \int dqk\hat{r}/r^2$ Newton's acceleration law: $\vec{F} = m\vec{a}$ Newton's law of Gravity: $\vec{F} = -\frac{GMm}{r^2}\hat{r}$ Electric dipole moment: $\vec{p} = q\vec{d}$, from negative to positive. Field far from electric dipole: $\vec{E} = -\hat{i}kp/y^3$ (perpendicular); $\vec{E} = 2\hat{i}kp/x^3$ (on dipole axis); Electric field along axis of circular ring of charge Q, with radius $a: E = kxQ/(x^2 + a^2)^{3/2}$ Field far from line charge: $E = 2k\lambda/r$ radial direction; $\lambda = Q/L$ Torque on dipole: $\vec{\tau} = \vec{p} \times \vec{E}$; Potential energy of dipole: $\vec{\tau} = -\vec{p} \cdot \vec{E}$

Gauss's law: flux through surface, $\phi = \oint \vec{E} \cdot d\vec{A} = q_{enclosed}/\epsilon_0$, $4\pi\epsilon_0 = 1/k$ Flat sheet with uniform charge density: $E = \sigma/(2\epsilon_0)$ perpendicular to surface At surface of conductor : $E = \sigma/\epsilon_0$ perpendicular to surface

Electric potential difference: $\Delta V_{AB} = -\int_{A}^{B} \vec{E} \cdot d\vec{l}$ Potential outside spherical charge distribution (from infinity): V(r) = kq/rPotential of charge distribution: $V = \int dV = k \int dq/r$ Electric field from potential: $E_l = -dV/dl$

Energy density in electric field: $u_E = \frac{1}{2}\epsilon_0 E^2$ Total energy in electric field $U = \int u_E d\text{Vol} = \frac{1}{2}\epsilon_0 \int E^2 d\text{Vol}$ Capacitance: C = Q/VGeneral energy stored in capacitor: $U = \frac{1}{2}Q^2/C = \frac{1}{2}CV^2$ Parallel plate capacitor: Capacitance: $C = \epsilon_0 A/d$; stored energy: $U = Q^2 d/(2\epsilon_0 A)$ Cylindrical capacitor inner radius a, outer b: $C = 2\pi\epsilon_0 L/\ln(b/a)$; $U = kL\lambda^2 \ln(b/a)$; $\lambda = Q/L$ Spherical capacitor: inner radius a, outer b: $C = 4\pi\epsilon_0 ab/(b-a)$; $U = \frac{1}{2}kQ^2(1/a-1/b)$ Capacitors in parallel: $C = C_1 + C_2 + \cdots$; in series: $1/C = 1/C_1 + 1/C_2 + \cdots$ Dielectrics: $C \to \kappa C_0$; (constant Q: $E \to E_0/\kappa$; $U \to U_0/\kappa$)

Current: I = dQ/dt, Power P = VdQ/dt = VI; (I in Amps; t in sec; Q in coul) Ohm's laws: V = IR; $E = \rho J$; (R in Ohms, ρ in Ohm meters, J is current density (Amps/m²) For an object of length l and area A: $R = l\rho/A$ Resistors in series: $R_{tot} = R_1 + R_2 + R_3 + \cdots$; in parallel: $1/R_{tot} = 1/R_1 + 1/R_2 + 1/R_3 + \cdots$ Kirchhoff's laws: voltage differences around closed loop = 0. Sum of currents at any node =0. RC circuit charging: $Q(t) = CV_0(1 - e^{-t/RC})$; $V(t) = V_0(1 - e^{-t/RC})$; $I(t) = (V_0/R)e^{-t/RC}$ RC circuit discharging: $Q(t) = V_0e^{-t/RC}$; $I(t) = (V_0/R)e^{-t/RC}$; Q(t) = CV(t)

Magnetic Force: $\vec{F} = q\vec{v} \times \vec{B} = qvB\sin\theta$; Total electromagnetic force: $\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}$ Circular motion of charged particle in uniform magnetic field: r = mv/(qB)Cyclotron frequency: $f = 1/T = qB/(2\pi m)$ Magnetic Force on a current: $\vec{dF} = I\vec{dl} \times \vec{B}$ Magnet dipole: $\mu = NIA$; torque: $\vec{\tau} = \vec{\mu} \times \vec{B}$; potential energy $U_{mag} = -\vec{\mu} \cdot \vec{B}$. Biot-Savart Law: $d\vec{B} = (\mu_0/4\pi)Id\vec{l} \times \hat{r}/r^2$; $\vec{B} = \int d\vec{B}$ B-field from circle of radius a on loop axis: $B = \mu_0 I a^2 / (2(x^2 + a^2)^{3/2}); (a \ll x)B \rightarrow \mu_0 \mu / (2\pi x^3)$ B-field for straight wire: $B = \mu_0 I / (2\pi r)$ Force between two parallel wires: $F_2 = I_2 l B_1 = \mu_0 I_1 I_2 l / (2\pi d)$ Ampere's law for steady current: $\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{encircled}$

Magnetic Flux through surface $A: \phi_B = \int \vec{B} \cdot d\vec{A}$ Faraday's law: EMF around closed loop $= \oint \vec{E} \cdot d\vec{l} = -d\phi_B/dt$ Lenz's law: The direction of the induced EMF and current is such that the B-field produced will OPPOSE the change in B-field

Mutual inductance: $M = \phi_2/I_1$ Self inductance: $L = \phi/I$ Voltage across inductance: mutual: $V_2 = -MdI_1/dt$; Self inductance: $V_L = -LdI/dt$ LR circuit starting up with battery with voltage V_0 , resistance R, and inductance L: $V_L = -V_0 e^{-Rt/L}$; $I = (V_0/R)(1 - e^{-Rt/L})$ LR circuit turning off with resistance R, and inductance L, and intial current I_0 : $I = I_0 e^{-Rt/L}$ Magnetic energy in an inductor: $U_B = \frac{1}{2}LI^2$

Magnetic energy density: $u_B = \frac{1}{2}B^2/\mu_0$