Clicker Questions
(with answers)for Physics 2B:
Electricity and Magnetism
Spring 2009
Kim Griest

April 6, 2009

Consider a distribution of charges in a small region giving rise to an E field, E at a distance d. If d is doubled what happens to E ?
a. E goes to $1 / 2$
© b. E goes $1 / 4$
c. E goes to $1 / 8$
d. Magnitude stays same but direction changes
(:) e. Can't say from this info

What electric field is needed to levitate a 0.01 gram rice crispy charged to -1 micro Coloumb against gravity?
a. $100 \mathrm{~N} / \mathrm{C}$ upward
b. 100 N/C downward
c. $10 \mathrm{~N} / \mathrm{C}$ upward
d. $10 \mathrm{~N} / \mathrm{C}$ downward
e. Can't say from this info
f the uniform charge on a hollow sphere is doubled what happens to E inside and outside?
a. Outside doubles, inside halves
b. Both inside and outside E doubles
c. Inside doubles, outside halves
© d. Outside doubles, inside stays the same
e. Both outside and inside stay the same

A charge of +3 mC is at the center of a hollow conductor which has a charge of +1 mC on it. What is the charge on inner surface of the conductor
a. 0 mC
© b. -3 mC
c. 4 mC
d. 3 mC
e. Depends on shape of conductor

What is the E field inside a long charged hollow pipe?

(:) a. E=0
b. $E=\lambda /\left(2 \pi \varepsilon_{0} r\right)$
c. $E=2 k \lambda / r$
d. $E=0$ at the center of the pipe, need a complicated calculation near the wall

A charge of $+3 \mu \mathrm{C}$ is at the center of a hollow neutral conductor (neutral means has a charge of $0 \mu \mathrm{C}$). What are the charges on the inner and outer surfaces of the conductor
a. Inner surface $0 \mu \mathrm{C}$, outer surface $0 \mu \mathrm{C}$
(-) b. Inner $-3 \mu \mathrm{C}$, outer $3 \mu \mathrm{C}$
c. Inner $-3 \mu \mathrm{C}$, outer $4 \mu \mathrm{C}$
d. Inner 0 , outer $3 \mu \mathrm{C}$
e. Inner $-3 \mu \mathrm{C}$, outer $0 \mu \mathrm{C}$

The potental difference between battery terminals is 1.5 volts. Some electrons travel between the terminals via a long wire and a complicated circuit. Other electrons travel via a short wire, thereby creating a spark. Which is true?
a. Short wire electrons arrive with more energy
b. Long wire electrons arrive with more energy
() c. Both wires give the same energy
d. Can't say with this info

Consider a charged hollow sphere of radius 5 cm . The electric potential at a point 15 cm from the sphere's center is 30 Volts. What is the potential 30 cm from the sphere's center?

0 Volts
b. 60 Volts
c. The same, 30 Volts
(). d. 15 Volts
e. Can not tell from this info; need to know the charge on the sphere

Consider a charged hollow sphere of radius 5 cm . The electric potential at a point 15 cm from the sphere's center is 30 Volts. What is the potential on the surface of the sphere?
(-) a. 90 Volts
b. 100 Volts
c. 30 Volts
d. 15 Volts
e. Can not tell from this info; need to know the charge on the sphere

Consider a charged hollow sphere of radius 5 cm . The electric potential at a point 15 cm from the sphere's center is 30 Volts. What is the potential at the sphere's center?
d. 15 Volts
e. Can not tell from this info; need to know the charge on the sphere

In the field of a point charge you find a potential difference of 25 Volts between two points 10 cm apart. Now you move closer to the charge and remeasure the potental of two points 10 cm apart. The new voltage is
a. lower
() b. higher
c. The same
d. Can not tell from this info
e. Depends on shape of conductor

What is potential at center of square of side a, with charges $+q,-q,+q,-q$ at edges?
() a. 0
b. $\quad 4 \mathrm{kq} / \mathrm{a}$
c. $\quad 4 \mathrm{kq} / \sqrt{ }(\mathrm{a} / 2)$
d. 15 Volts
e. $\mathrm{kq} / \mathrm{a}^{2}$

If an E field in the x direction is $E=a q x^{2}$, what is the potential as a function of x ? (Assume $V=0$ at $x=0$)
a. $\quad V(x)=2 a q x$
b. $\quad V(x)=-2 a q x$
c. $\quad V(x)=a q x^{3} / 3$
(). d. $\quad V(x)=-a q x^{3} / 3$
e. Can not tell from this info; need to know the distribution of charge

The energy work done by bringing 2 charges together is:
a. disappears
b. Is converted into heat
c. Is stored in the charges themselves
(;) d. Is stored in the invisible electric field
e. Like gravitational energy can never be recovered

The big demo capacitor was 0.014 Farads and was charged to 6000 V . How many Couloumbs did it hold when charged?

```
() a. }\quad84\textrm{C
    840 C
    2.3\mu\textrm{C}
    428,000 C
    e. Can't say from this info
```

The big demo capacitor was 0.014 Farads and was charged to 6000V. How many joules of energy did it hold?

```
a. 72,000 J (lift one metric tonne 7 meters)
    () b. 252,000 J (lift one metric tonne 25 meters)
    840J (lift one tonne 1.5 cm
    c. 840J (lift one tonne 1.5 cm}\mathrm{ )
    d. 428,000 J (lift one tonne
```

As current moves through a circuit from one terminal of a battery to the other:
a. The amount of current decreases

The amount of voltage decreases
Energy is converted to heat
d. Both a. and c .
(:) e. Both b. and c.

Two capacitors are connected in series:
a. They both have the same voltages across their terminals
(). b. They both have the same charges on their plates
c. Both the voltages and charges can differ depending upon their capacitances
d. Both the voltages and charges are the same independent of their Both the voltag
capacitances

Two capacitors are connected in parallel:
() a. They both have the same voltages across their terminals

They both have the same charges on their plates
Both the voltages and charges can differ depending upon their capacitances
Both the voltages and charges are the same independent of their
capacitances
.

Amps \times seconds (Current times time) equals=

```
a. Volts (Voltage) (volts)
```

a. Volts (Voltage) (volts)
b. Ohms (Resistance) (ohms)
b. Ohms (Resistance) (ohms)
(). c. Coulombs (Charge)
(). c. Coulombs (Charge)
d. Joules (Energy)

```
    d. Joules (Energy)
```

Two resistors R1 and R2 are in series. The total resistance is

```
a. R1R2/(R1 + R2)
    R1 + R2
    1/R1 + 1/R2
    Can't tell unless you know the voltage across them
```

 The acceleration
 Both the force and the acceleration
 None of the above
 Two capactors C1 and C2 are in series. The total capacitance is

```
() a. C1 C2/(C1 + C2)
    C1 + C2
    1/C1+1/C2
    d. Can't tell unless you know the charge on them and voltage across them
```

Two resistors R1=3 Ohms and R2=2 Ohms are in series connected to a 12 volt battery. Which resistor is using more power?

```
(:) a. R1
    b. R2
    c. They use the same power since they have the same current flowing through
    them
    d. Can't tell from this info
```

Two resistors $\mathrm{R} 1=3$ Ohms and $\mathrm{R} 2=2$ Ohms are in series connected to a 12 volt battery. The total current flowing in the circuit is
(). a. $\quad 12(2+3)=2.4 \mathrm{amps}$
b. $12 / 3+12 / 2=10 \mathrm{amps}$
c. $\quad 12 \times(3+5)=180 \mathrm{amps}$
d. Can't tell from this info

Two resistors R1=300 Ohms and R2=200 Ohms are in parallel connected to a 12 volt battery. Which resistor is using more power?
$\begin{array}{ll}\text { a. } & \text { R1 } \\ \text { b. } & \text { R2 }\end{array}$
c. They use the same power since they have the same current flowing through
them
d. Can't tell from this info

A 60 W bulb (240 Ohms) and a 75W (192
Ohms) bulb are in series connected to a 120 volt Which is correct language usage? wall socket. Which bulb will be brighter?
(:) a. 60 W
c. They use the same power since they have the same current flowing through them
d. Can't tell from this info

Voltage through a resistor, current in a resistor
() b. Voltage across a resistor, current through a resistor

Voltage in a resistor, current through a resistor
d. Voltage against a resistor, current across a resistor
e. It's just semantics; doesn't matter

For the Kirchhoff loop drawn on the board the loop equation is
a. $\quad E_{1}-l_{1} R_{1}+E_{2}-I_{4} R_{4}-I_{3} R_{2}=0$
c. $E_{1}-1, R_{1}-E_{2}-L_{1}, R_{4}+1, R_{2}=0$
$\begin{array}{ll}\text { c. } & E_{1}-l_{1} R_{1}-E_{2}--_{4} R_{4}+I_{3} R_{3}=0 \\ \text { d. } & E_{1}-l_{1} R_{1}+E_{2}-l_{4} R_{4}+I_{3} R_{3}=0\end{array}$
$\begin{array}{ll}\text { d. } & E_{1}-l_{1} R_{1}+E_{2}-I_{4} R_{4}+I_{3} R_{3}=0 \\ \text { e. } & E_{1}-I_{1} R_{1}-E_{2}-I_{4} R_{4}+I_{3} R_{3}=0\end{array}$

For a Kirchhoff loop with a battery, resistor and capacitor in series, the equation is
$E-I R-Q / C=0$. There is only one equation for two unknowns: Q and I. How can this be solved?
a. Another equation is the node equation, which must be included
(:) b. Q and I are related by differentiating
c. It requires knowledge of other parts of the circuit
d. Sometimes one can solve a single equation for 2 unknowns
e. Sometimes equations such as this cannot be solved

A positively charged particle moves to the right in a magnetic field that points upward. Which way does the magnetic force on the particle point?

```
a. Upward
    b. Into the board
c. Downward
() d. Out of the board
    e. There is no force since the velocity and B field are perpendicular
```

A negatively charged particle moves to the left in a magnetic field that points downward. Which way does the magnetic force on the particle point?

```
a. Upward
(); b. Into the board
    c. Downward
    d. Out of the board
    e. There is no force since the velocity and B field are perpendicular
```

A current in a wire moves to the left in a magnetic field that points downward. Which way does the magnetic force on the wire point?
a. Upward
a. Into the board
c. Downward
(). d. Out of the board
e. There is no force since the velocity and B field are perpendicular

To calculate a magnetic field you would use
a. Faraday's law
(:) b. Ampere's law
(). b. Ampere's law
c. Coulomb's law
c. Coulomb's law
d. Gauss's law
() e. Biot-savart law

The current flowing through a wire is turned off. Which way does the induced current in the loop flow?

```
a. Clockwise
    () b. Counterclockwise
    c. No current will flow
```


1
The current flowing through a wire is turned off Which way does the induced current in the loop flow?
c. No current will flow

```
() a. Clockwise
() a. Clockwise
    b. Counterclockwise
    b. Counterclockwise

1

The current flowing through a wire is turned on.

Which way does the induced current in the loop flow?

\section*{() a. Clockwise}
b. Counterclockwise

No current will flow

1```

