PHYSICS 227: Cosmology

Instructor: Dr. A. M. Wolfe (phone: 47435)
Office Hours: Fri. 10-12
Homework no. 1
Due: Thurs. April 22
1
In class we computed radial timelike geodesics in a FRW metric.
(a) Do the same for lightlike geodesics.
(b) Assuming that the photon energy $h \nu=U_{a} p^{a}$, where U_{a} is the four velocity of a fundamental observer in the FRW metric and p^{a} is the 4 momentum of the photon, use your solution in (a) to show how the redshift depends on scale factor $a(t)$.

2
In class we showed that the peculiar velocity with respect to a fundamental observer, $U^{\alpha} \propto 1 / a(t)$, where in this case U^{α} are the spatial components of the time-like 4 velocity of a galaxy with respect to a fundamental observer. Show that the corresponding physical observable, the 3 -velocity $v^{\alpha}\left(\equiv d x^{\alpha} / d t\right)$, does not exceed the speed of light as $a(t) \rightarrow 0$, but rather saturates at a well determined value. Hint: make use of the relationship between 4 -velocity and 3 -velocity.
3
(a) Use coordinate transformation matrix methods to prove that in the case of homogeneous isotropic flow the functional form of the Hubble law $\mathbf{u}=H \mathbf{x}$ is invariant under rigid rotations and translations of coordinate systems.
(b) Now consider the more general case in which $u_{\alpha}=H_{\alpha \beta} x^{\beta}$ and the Hubble tensor $H_{\alpha, \beta}$ has off diagonal elements. Is the functional form of this flow invariant under the either group of coordinate transformations described in (a)?

4
(a) Compute the normalized scale factor $x \equiv a(t) / a_{0}$ as a function of $t-t_{0}$ from $x=0$ to $x \leq 2.0$ for FRW models with $\Omega_{\Lambda}=0, \Omega_{R}=2.55 \times 10^{-5} / h^{2}$,and $\Omega_{\mathrm{M}}(0)=0.2,0.6,1.0,2.0,4.0$. Here t_{0} is current cosmic time where $((1 / a) d a / d t)_{0}=H_{0}=70 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$.
(b) Repeat part (a), but now let $\Omega_{\Lambda}+\Omega_{\mathrm{M}}+\Omega_{R}=1$, and do the calculation for $\Omega_{\mathrm{M}}(0)=0.2,0.4,0.6,0.8$. 5

In class we discussed density parameters derived at the current time. We can also define density parameters at cosmic time t as $\Omega_{i}(t)=\rho_{i}(t) / \rho_{\text {crit }}(t)$ where $\rho_{\text {crit }}(t)=3 H^{2}(t) /(8 \pi G)$ and $\rho_{i}(t)$ correspond to matter, radiation, and vacuum energy densities. We may also define the curvature term as $\Omega_{K}(t)=-c^{2} K /(H(t) a(t))^{2}$.
(a) Derive the relationship

$$
\Omega_{\Lambda}+\Omega_{M}(t)+\Omega_{R}(t)+\Omega_{K}(t)=1
$$

(b) Plot each of the $\Omega_{i}(t)$ as a function of redshift for the case that the present values $\Omega_{K}=0$, $\Omega_{\Lambda}=0.7, \Omega_{R}=2.44 \times 10^{-5} / h^{2}$, and $h=0.7$.
(c) At what redshifts are $\Omega_{M}(t)=\Omega_{R}(t)$, and $\Omega_{\Lambda}=\Omega_{M}(t)$?

