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This paper presents a novel, unified approach to the theory of turbulent transport of parallel
momentum by collisionless drift waves. The physics of resonant and nonresonant off-diagonal
contributions to the momentum flux is emphasized, and collisionless momentum exchange between
waves and particles is accounted for. Two related momentum conservation theorems are derived.
These relate the resonant particle momentum flux, the wave momentum flux, and the refractive
force. A perturbative calculation, in the spirit of Chapman–Enskog theory, is used to obtain the wave
momentum flux, which contributes significantly to the residual stress. A general equation for mean
k� ��k��� is derived and used to develop a generalized theory of symmetry breaking. The resonant
particle momentum flux is calculated, and pinch and residual stress effects are identified. The
implications of the theory for intrinsic rotation and momentum transport bifurcations are
discussed. © 2008 American Institute of Physics. �DOI: 10.1063/1.2826436�

I. INTRODUCTION

Momentum transport, in particular, the turbulent trans-
port of toroidal momentum has long been of interest to re-
searchers in magnetic fusion and tokamak dynamics. The
earliest investigations of toroidal momentum confinement
were motivated by the desire to understand neutral beam
injection performance and to probe the basic physics of con-
finement processes by comparing thermal and momentum
diffusivities, �i, ��, etc.1 Subsequently, the dual realizations
that electric field shear is a key control parameter for en-
hanced confinement �via turbulence suppression2� and that
toroidal rotation “fed back” on electric field shear via radial
force balance sparked3 further interest in toroidal momentum
transport and its interplay with confinement.4 This growth in
interest was accompanied by the developing realization that
both self-generated �via Reynolds stress5� and externally
driven flows contributed to electric field shear vE� . Key ex-
periments included the discovery of the VH-mode,6 in which
toroidal velocity shear regulated itself and other confinement
channels via vE� , the discovery that a “pinch” or inward con-
vection in the flux of toroidal momentum was required to
model momentum profile structure7 �much as a particle pinch
is required to explain density profile structure�, and studies
of the fluctuation-driven parallel Reynolds stress �ṽrṽ�� and
its relation to local flow profile evolution.8

Interest in toroidal momentum transport was further
stimulated by the discovery of “spontaneous” or “intrinsic”
rotation9 and the realization that such intrinsic rotation may
be required to suppress resistive wall modes in ITER,10

where neutral beam injection �NBI� is of limited utility and
high cost. Spontaneous rotation refers to the observation that

tokamak plasmas appear to rotate toroidally, at quite healthy
velocities, in the absence of any apparent toroidal momen-
tum input. The effort to understand spontaneous rotation has
two thrusts, namely:

�i� An effort to understand nondiffusive, off-diagonal
contributions to the momentum flux which may ac-
count for radially inward transport of momentum and
resulting rotation profile peaking on axis.

�ii� An effort to understand the role of edge plasma dy-
namics in the onset of spontaneous rotation. In par-
ticular, several observations of the rotation evolution
suggest that the profile of spontaneous rotation
evolves inward, from the separatrix, so the edge may
constitute a “dynamic” boundary condition or �possi-
bly� a source.

As part of �ii�, there has been intense interest in uncovering a
possible fluctuation-driven momentum pinch or inward stress
and relating it to the overall profile self-organization struc-
ture and energetics of the plasma.11 Efforts in this vein have
discovered an inward convective pinch by perturbation
experiments12 utilizing ripple loss with pulsed NBI, and have
linked spontaneous rotation to the offset rotation values de-
duced from scans of rotation versus torque.13 As part of �ii�,
one striking observation which has emerged is that the Rice/
ITPA database scaling �v��0���wp / Ip is most clearly
manifested in H-mode plasmas,14 suggesting that an edge
effect may be fundamental to its origin. Other edge plasma
studies suggest a link of spontaneous rotation in the L-mode
to scrape-off-layer flows �SOL�, which can be manipulated
by moving the divertor magnetic null-point location.15 This
has lead to the speculation that the SOL flows may “spin-up”
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the core, but care must be taken with this interpretation of
the data. Another striking feature of these experiments is the
apparent disconnect between L-mode and H-mode spontane-
ous rotation phenomenology, suggesting that there may be an
intimate link between transition dynamics �involving vE� , for
example� and spontaneous rotation. Studies of the relation
between edge pedestal structure and intrinsic rotation veloc-
ity scaling could be relevant here, but are conspicuous by
their absence. Overall, a picture is emerging which suggests
that in H-mode plasmas, intrinsic rotation builds up near the
edge and is then redistributed inward, thus producing a
peaked rotation profile. In addition, interesting studies on the
TCV tokamak have also uncovered a new class of momen-
tum transport bifurcations which occur in the core plasma.16

In a somewhat related vein, recent studies on the JT60-U
tokamak also suggest that there is a departure from a simple
diffusion-convection model of momentum transport in re-
gions of steep �P located in the discharge core.17 Generally,
however, rather little is known about the interesting possibil-
ity of intrinsic rotation in torque-free, internal transport bar-
rier �ITB� plasmas. Finally, virtually none of these studies
take any serious account of the possibility of anomalous
transport of poloidal momentum, as observed in JET.18

Poloidal rotation may be an especially important player at
the edge or during an L→H transition.

Theoretical approaches to the problem of turbulent trans-
port of toroidal momentum and intrinsic rotation have fo-
cused on attempts to calculate the various elements of the
momentum flux.19 Various works include calculations of the
momentum diffusivity ��,20 calculations of the momentum
convection velocity V in various models,21–24 and calcula-
tions of the residual stress driven by fluctuations and �P,
which can act as a local anomalous momentum source.25

Most of the calculations of off-diagonal flux elements in-
volve some assumption of a mechanism for broken k� spec-
tral symmetry, since �ṽrṽ�����y�̃���̃� requires �k��eff�0 for
a significant nondiffusive component. In one case, such sym-
metry breaking occurred via an interesting interplay of cur-
vature coupling and ballooning structure.23 In scenarios in-
volving the electric field shear, progress was facilitated by
drawing upon previous results for the effect of shear on tur-
bulence and transport.26–29 Other approaches have invoked
the effects of blobs or other coherent structures.30 Most of
the calculations implemented so far have been extremely
simple and based on fluid models. Even the few kinetic cal-
culations have not treated the response of both resonant and
nonresonant particles and have not addressed parallel accel-
eration effects. However, the general structure of a kinetic
model has been discussed, to some extent, in Ref. 31.

This paper presents a novel unified approach to the
theory of turbulent transport of parallel �i.e., �toroidal� mo-
mentum by collisionless drift waves. There are two principal
motivations for yet another new look at this very old prob-
lem. These are:

�i� The need to identify and understand off-diagonal con-
tributions to the turbulent momentum flux in colli-
sionless drift wave turbulence. Such off-diagonal
terms are not limited to convection �i.e., a “pinch”�,

but may also involve a residual stress, i.e., an element
of the momentum flux not proportional to �v�� or
��v�� /�r. Also in a collisionless plasma, off-diagonal
terms also can conflate momentum transport with mo-
mentum transfer between resonant particles and
waves.

�ii� The need to address �i� within a theoretical framework
which accounts for wave-particle momentum ex-
change and the somewhat related problem of distin-
guishing between resonant and nonresonant
transport.32 Confronting the latter is crucial for under-
standing momentum transport in a stationary plasma,
where the quasilinear theory of nonresonant transport
is no longer meaningful, but where significant mo-
mentum transport may occur via waves.

The phenomenology which drives the interest in off-diagonal
contributions to the momentum flux, such as a possible in-
ward convection �i.e., momentum “pinch”� and a possible
�P-driven residual stress, has been discussed above. The
considerations which drive motivation �ii� become apparent
upon comparison of the simple physics of turbulent momen-
tum transport to the more familiar phenomena of turbulent
transport of particles and energy. Unlike density, momentum
can be exchanged between waves and particles via resonant
interaction with the underlying turbulence. Unlike the ther-
mal energy density, which always exceeds the wave energy

density �i.e., ���nT� since 	ñ /n ,e�̃ /T
�1, the nonreso-
nant particle momentum density of the fluctuations is in fact
equal to the wave momentum density for electrostatic drift
wave turbulence, since the field momentum density of the
latter is negligible. This momentum equality has obvious im-
plications for the onset of intrinsic rotation. Hence while
transport theories may often neglect wave-particle energy ex-
change �though electron-ion energy coupling via fluctuations
has been studied�, and wave energy transport, they cannot
ignore wave-particle momentum exchange or transport of
wave momentum. Thus,

�i� Wave-particle momentum transfer is necessarily a key
element of the momentum transport process, since
“wave momentum” is equal to nonresonant particle
momentum and can be exchanged with resonant par-
ticles.

�ii� The distinction between resonant and nonresonant
transport processes is critical, since the former is me-
diated primarily by particles and likely is dominant
near marginality in stiff profile regimes, while the lat-
ter is mediated by waves and likely is dominant in
regimes of strong turbulence. A complete theory must
address both processes.

Since nonresonant transport is mediated primarily by waves,
it seems appropriate to describe it in terms of wave dynam-
ics, quantities, populations, etc. The strong coupling between
momentum transport and momentum transfer is readily ap-
preciated upon a moments consideration of the mean field
�i.e., quasilinear� evolution equation for the mean distribu-
tion function �f�. This may easily be derived by averaging
the drift/gyrokinetic equation
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Here Dr,r accounts for the familiar cross-field, scattering, and
transport process, and Dv�,v�

is simply the stochastic accelera-
tion along the mean magnetic field. More interesting indeed,
however, are the cross-terms Dr,v�

and Dv�,r
which represent

correlated radial scattering and parallel acceleration. Within
the quasilinear approximation, these are

Dr,v���
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Te
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iR�� − k�v�� ,

where R��−k�v�� is the response function. Dr,v�
is striking in

that

�i� It describes, within kinetic theory, precisely the pro-
cess of correlated radial scattering and parallel accel-
eration which is required to generate a sheared paral-
lel flow, as suggested by the phenomenon of intrinsic
rotation.

�ii� It is explicitly proportional to the correlation
��	�����, as is the Reynolds stress �ṽrE�B

ṽ��, which
is responsible for regulating radial transport of paral-
lel momentum. Note that the sign of this correlator,
and of Dr,v�

can be either positive or negative, and so
can produce a net inward or outward momentum flux.

�iii� Wave-particle resonance provide a direct way for ob-
taining for Dr,v�

�0. In particular, in contrast to specu-
lations advanced in the course of previous studies,
neither electric field shear nor toroidicity are necessar-
ily required for off-diagonal momentum flux
contributions.

A second motivation for this work is the long standing ques-
tion of how to reconcile nonresonant transport with station-
ary turbulence. This question is often overlooked by trans-
port models. Many important drift instabilities, such as the
ion temperature gradient driven �ITG� mode, can have a
strongly nonresonant, fluid-like character, particularly in re-
gimes far from marginal stability. This observation naturally
motivates the question of how to calculate the stationary
nonlinear counterpart to this intrinsically nonstationary pro-
cess. The traditional procedure of replacing the factor of ��k�
�or, incorrectly, �k� in the quasilinear theory with a decorre-
lation rate ignores the fact that for electrostatic turbulence,
nonresonant particle dynamics are closely linked to wave
dynamics, and so should be described in terms of the wave
population, and other quantities characteristic of wave dy-
namics. In particular, consideration of momentum transport
leads us to realize that since nonresonant particle momentum
is the same as the wave momentum, then transport of non-
resonant particle momentum is most naturally described as a

process of transport of wave momentum. Another key issue
here is the physics of the irreversibility which underlies the
wave momentum transport. Thus, a major focus of this paper
is the formulation of the calculation of the stationary state
counterpart of the nonresonant particle momentum flux in
terms of the properties and dynamics of the wave population
density. As we will see, this formulation bares certain simi-
larities to the structure of the theory of radiation hydrody-
namics in the limit of large optical depth.33 The approach and
results may also be of interest in the context of other prob-
lems involving mesoscale dynamics, most notably that of
turbulence spreading.34–37

In this paper, then, we present a general theory of toroi-
dal momentum transport by collisionless drift wave turbu-
lence, with special emphasis on the physics of both nonreso-
nant and resonant off-diagonal contributions to the
momentum flux. Starting from the fundamental gyrokinetic
equation, we derive a momentum theorem �MT-I� relating
momentum evolution to the resonant particle momentum flux
and the wave momentum flux. We extend this theorem, de-
rived using a wave-energy balance relation �i.e., generalized
Poynting theorem�, to one which includes the effect of forces
arising from the recoil on the plasma dielectric medium due
to wave refraction �i.e., bending of wave rays must exert a
force on the plasma!�. This more general momentum theo-
rem �MT-II� is derived using the full wave-kinetic equation.
We then discuss the varieties of stationary momentum bal-
ance, and the possible interplay between the resonant particle
momentum flux, the wave momentum flux and the refractive
force, along with the significance of these for intrinsic rota-
tion. After this, we undertake a perturbative calculation, in
the spirit of Chapman–Enskog theory, to relate the wave mo-
mentum flux to the structure of the mean macroscopic wave
quanta density distribution in both x and k. The spatial and
wave vector gradient dependence of this flux arise from spa-
tial propagation and shear flow-induced wave wind-up. A
generalized equation for the evolution of the mean parallel
wave vector �k�� is derived from the wave kinetic equation,
and used to quantify the possible scenarios for competition
between a number of possible and relevant symmetry break-
ing mechanisms. Of course, the resonant particle momentum
transport is calculated as well, and shown to consist of the
sum of a diffusive flux, a convective flux �a pinch, i.e., in-
ward convection, in certain cases�, and a residual stress con-
tribution. The interplay among these is strongly sensitive to
the mechanism of symmetry breaking. Finally, we consider
the “bottom line” implications of the theory for intrinsic ro-
tation and momentum transport bifurcations in tokamaks.
In particular, we propose a novel class of momentum trans-
port bifurcations and discuss the relation of these to the
more general phenomenon of intrinsic rotation in H-mode
plasmas.

The remainder of this paper is organized as follows: In
Sec. II, we prove two momentum conservation theorems at
the level of mean field theory. The first theorem is a special,
albeit simpler and more accessible case of the second. Sec-
tion III presents a calculation of the radial flux of parallel
wave momentum. A related approach allows the derivation
of a general evolution equation for the net parallel quasipar-
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ticle momentum ��dkk�N�, which enables the quantitative
comparison of different, competing symmetry breaking
mechanisms. Section IV presents the calculation of the reso-
nant particle momentum flux. In Sec. V, we discuss the the-
oretical results in the light of known aspects of momentum
transport phenomenology. Special attention is devoted to the-
oretical predictions of various types of momentum transport
bifurcations. This section is useful for those who are mainly
interested in applications rather than development of the
theory. Section VI presents a discussion and conclusions.

II. MEAN FIELD THEORY AND CONSERVATION
OF MOMENTUM IN COLLISIONLESS DRIFT
WAVE TURBULENCE

In this section we discuss conservation of momentum
and the structure of the momentum budget relation in the
mean field theory of drift wave turbulence. We assume a
simple geometry r, 	, � and leave extensions to the torus to
a future paper. Two theorems of conservation of momentum
�MT-I, MT-II� are proved. The latter �MT-II� constitutes a
generalization of the former �MT-I�. Special emphasis is
placed on delineating the roles of resonant particles and
waves in momentum balance and transport, as well as on the
resolution of several questions related to how nonresonant
diffusion effects are manifested in a stationary state.

A brute force approach to the problem of momentum
balance and conservation might proceed as follows. Starting
from the drift kinetic equation �i.e., for k��i�1� for ions in
collisionless electrostatic turbulence,

� f

�t
+ v���f −

c

B
� � � b̂ · �f +

e

m
E�

� f

�v�

= 0 �1a�

the mean field equation follows as
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r
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�

�v�
� e

m
Ẽ� f̃� = 0 �1b�

so that the usual quasilinear calculation gives
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 , �2a�

where

Dr,r = �scs�
k

�s
2k	
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iR�� − k�v�� , �2b�

Dr,v�
= Dv�,r

= cs
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iR�� − k�v�� , �2c�

Dv�,v�
= cs
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i�
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�s
2k�

2� e�̃

Te

�2


iR�� − k�v�� �2d�

are the coefficients corresponding to radial spatial scattering
by stochastic E�B drifts �Dr,r�, parallel stochastic accelera-
tion as in the 1D Vlasov plasma �Dv�,v�

�, and correlated par-

allel acceleration and radial scattering �Dr,v�
�, which is re-

lated to the generation of a radially sheared parallel flow.
Since plasma momentum �P��=mi�dv�v��f� is carried by
ions, taking the v� moment of Eq. �2a� says that parallel
momentum evolves according to

�

�t
�P�� =

mi

r

�

�r
�r� dv�iv�i�Dr,r

��f�i

�r
+ Dr,v�

��f�i
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We see, then, that Eq. �3� has the form,

��P��
�t

= −
1

r

�

�r
�r�r,�� + S� �4�

and states that momentum evolves via transport by turbu-
lence induced stress ��r,�� and via a local “source or sink,”
due to wave-particle scattering �which we term momentum
transfer�. Note that the definitions of �r,� and S� in terms of
fundamental microscopic quantities are clear from Eqs. �3�
and �4�.

The result of Eq. �4� is somewhat unsettling on account
of the appearance of an explicit local fluctuation driven
source S� for ��f� /�t. Recall that the aim here is to determine
the off-diagonal momentum flux �i.e., transport�, in order to
understand possible inward convection and stresses. The
presence of a local, fluctuation induced source significantly
complicates this task. One does not know how significant
this effect is, though since Dr,v�

�Dv�,r
, S� is clearly not neg-

ligible, and neither does one know the fate of momentum
coupled to/from the particles to the fluctuations. One thing
that is clear, however, is that the mean field contributions to

�f� evolution from parallel acceleration �e /m�Ẽ�� f̃ /�v���
should not be neglected a priori. Another is that a natural
way to formulate the theory is in terms of resonant particles
and waves, since these conserve momentum between them.

The physical content of S� in Eq. �4� is best resolved by
reconsidering the basic energy and momentum conservation
theorems for the quasilinear theory of the 1D Vlasov plasma.
For that well-studied system, we know that energy balance
may be stated in either of two equivalent ways: as conserva-
tion of the sum of resonant particle ��RP� and wave ��W�
energy densities, i.e.,

d

dt
��RP + �W� = 0 �5a�

or as conservation of the sum of particle and electrostatic
field energy density, i.e.,

d

dt
��P + �F� = 0. �5b�

The equivalence of these two results follows from the fact
that �W=�F+�NRP, i.e., waves �collective modes� are sup-
ported both by nonresonant particles and fields. We observe
that Eq. �5a� can be alternatively recast in terms of the qua-
siparticle density N �wave quanta density or usually action
density� by noting that �W=N�k ,x , t��k, so that the sum of
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resonant particle energy and quasiparticle energy is
conserved.32

Similarly, for momentum, �in the absence of external
sources� we can write

d

dt
�PRP + PW� = 0 �6a�

and

d

dt
�PP + PF� = 0. �6b�

Here PRP is the resonant particle momentum density, PW is
the wave momentum density �sometimes referred to as the
pseudomomentum density�, and PP= PRP+ PNRP is the total
particle momentum density. Equation �6b� follows from Eq.
�6a� since the field momentum PF for electrostatic turbulence

is necessarily zero �Ẽ� B̃ /4c2=0, since B̃=0�. Thus the
increment of nonresonant particle momentum density is nec-
essarily equal to the wave momentum density, i.e.,

�PNRP = PW, �6c�

where �PNRP= PNRP− PNRP
�0� is the momentum density associ-

ated with the fluctuation driven nonresonant particle flow,
and PNRP

�0� is the zeroth order nonresonant particle momentum
density, associated with the background �mean� flow. Equa-
tion �6c� is a simple, albeit important, identity which is ap-
plicable to any system of electrostatic turbulence, including
electrostatic drift wave turbulence.

In this paper, we focus on electrostatic drift wave driven
transport. Thus, turning to momentum conservation in 3D
electrostatic drift wave turbulence, it seems incontrovertible
that resonant particle momentum density will be conserved
against wave momentum density. In contrast to the “text-
book” 1D Vlasov problem, however, the radial fluxes of both
quantities will enter, as well. Thus, we can expect a conser-
vation relation of the form,

�

�t
t�P��RP +

1

r

�

�r
�r�ṽEP̃��RP� +

�

�t
�P��w +

1

r

�

�r
�r�r,�

w � = 0,

�7�

where �ṽEP̃�� is the radial E�B flux of resonant particle
parallel momentum and �r,�

w is the radial flux of parallel
wave momentum. In a quasiparticle or eikonal formulation
of wave dynamics, ��r,�

w �=�dk�vgrk��N�, where vgr is the ra-
dial group velocity of the waves.38 Since, however,
PW=�PNRP, Eq. �7� immediately undergoes an important
simplification to

�

�t
��P�� +

1

r

�

�r
�r��ṽErP̃��RP + ��r,�

w ��� = 0. �8�

At this point, a careful discussion of how ��P�� �the mean
momentum increment driven by the fluctuations� relates to
the evolution of the background momentum density is nec-
essary. The total momentum density �P�� is defined as the
sum of the momenta of the mean flow and that of the fluc-
tuations. Thus, we have

�P�� = P�,0 + ��P�� , �9a�

where

d�P��
dt

= S , �9b�

i.e., we find it useful to introduce an external momentum
density source S�r , t� �i.e., such as NBI-driven momentum
input�. Thus,

�

�t
�P�,0 + ��P��� +

1

r

�

�r
�r���r,�

NRP�0 + �ṽErP̃��RP + ��r,�
w ��� = S

�9c�

follows as the dynamical evolution equation for total mo-
mentum. Here ��NR�0 is the zeroth order �nonresonant� mo-
mentum flux which corresponds to the nonresonant quasilin-
ear flux plus the neoclassical flux �i.e., the latter being the
only surviving contributor to the flux in the absence of fluc-

tuations�. The quasilinear part is O��e�̃ /Te�2� and is propor-
tional to the magnitude of the linear growth rate, ��k�. This
differs from the wave momentum flux in a subtle way. In this
regard, and by way of contrast, note that ��r,�

w � in contrast,
need not be limited to a second order effect in fluctuation
level, and can involve “spreading” of the momentum of fluc-
tuations, and other nonlinear processes. Physically, ��r,�

NRP�0

is a necessary part of the description of the momentum den-
sity evolution in time, though it asymptotes to the �usually
negligible� collisional level in the case of stationary turbu-
lence.

Regarding temporal evolution, it is useful here to discuss
the distinctions between “stationary mean momentum pro-
file,” “stationary turbulence” and “intrinsic rotation.” Start-
ing from Eq. �9c�, stationarity of the mean momentum profile
requires �t�P�,0+ ��P���=0, so the momentum is steady on
transport time scales. This then gives the usual balance be-
tween momentum input and transport, i.e.,

1

r

�

�r
�r���r,�

NRP�0 + �ṽErP̃��RP + ��r,�
w ��� = S �10a�

so the mean profile is determined by

��r,�
NRP�0 + �ṽErP̃��RP + ��r,�

w � =
1

r
� r�dr�S�r�� �10b�

and the profile boundary conditions. In addition, it is neces-
sary to parametrize ��r,�

w � in terms of plasma parameter pro-
files. Generally this need not be a purely local relation. Note
that Eq. �10b� allows the possibility that the turbulence can
be at least weakly nonstationary, though the profile is not
globally evolving. For stationary turbulence, we have
��r,�

NRP�0→ ��r,��C, where ��r,��C is the collisional momen-
tum flux, so that Eq. �10b� becomes

��r,��C + �ṽErP̃��RP + ��r,�
w � =

1

r
� r�dr�S�r�� �10c�

which is the usual stationary state �for both mean field and
turbulence� criterion. Note that ��r,�

w � accounts for the non-
resonant transport in this stationary state, and that this trans-
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port is purely wave transport. Equation �10c� indicates that
the most important results of this paper are the momentum
theorems for the evolution of ��P�� �i.e., MT-I, MT-II,
proved in this section� and the actual calculations of

�ṽErP̃��RP and ��r,�
w � �discussed in Secs. III and IV, respec-

tively�. Finally, the case of “intrinsic rotation” for stationary
turbulence corresponds to one where S→0, i.e., where

��r,��C + �ṽErP̃��RP + ��r,�
w � = 0 �10d�

and which has nontrivial profile solutions in the absence of
momentum input. Note that the boundary conditions for the
solution of Eq. �10d� will have a significant impact on the
answer to this question. The interesting possibility of

�S�=0 but S̃�0, i.e., a momentum noise source due to ava-
lanches, etc.,39,40 will be discussed in a future paper. In par-

ticular �for �S̃�=0� it would be interesting to compare the

intrinsic rotation profile for S̃=0 with that calculated for

small but finite S̃.
Equation �8� constitutes the first momentum conserva-

tion theorem �MT-I� to be presented in this study. Two salient
features of Eq. �8� are

�i� The somewhat ill-defined nonresonant particle mo-
mentum flux has been eliminated in favor of the
wave-momentum flux ��r,�

w �, which is well defined for
stationary turbulence. The irreversibility which under-
pins ��r,�

w � in a stationary state must necessarily origi-
nate in nonlinear wave-wave and wave-particle inter-
actions.

�ii� The ambiguous anomalous source S� which appears in
Eq. �3� is replaced by −� · �r̂�r,�

w �, which suggests that
the apparent “source or sink” due to wave-particle
interaction must ultimately dispose of momentum by
coupling it to radially propagating waves. This sug-
gests that momentum transport is best described in
terms of the combined flux of resonant particles and
waves, since these two populations conserve momen-
tum between them. This leads us naturally to think in
terms of a picture of resonant particles and
quasiparticles.

Points �i� and �ii� go a long way toward resolving the ques-
tions inherent in Eq. �3�. The challenge, now, is to prove
MT-I, as expressed by Eq. �8�. We now turn to this task.

Momentum theorem I is most directly proved by relating
evolution of net resonant particle momentum to the sum of
the resonant particle momentum flux and the net force ex-
erted on the plasma by the resonant particles. The latter can
then be linked to wave-momentum, yielding a net momen-
tum conservation theorem. The evolution equation for the
total resonant particle momentum is derived by adding the
parallel velocity moments of the individual resonant electron
and resonant ion drift kinetic equations,

�

�t
�P��RP +

1

r

�

�r
�r�ṽErP̃��RP� = e�Ẽ��ñi − ñe��RP. �11�

The right-hand side of Eq. �11� does not vanish on account of
quasineutrality, since ñi= ñe is not equivalent to ñiR= ñeR, i.e.,

resonant ions need not be neutralized by resonant electrons
�see Appendix A for the explicit evaluation of this term�. It is
convenient to express the density perturbations in terms of
the susceptibilities �i,e�k ,�k� via

ñ�i,e�k,�k
=

n0e

Te
�̃k,�k

��i,e��k,�k� .

Note that ��i,e� refers to a response function, not a thermal
diffusivity! Recalling that ��i,e��k ,�k� for resonant particles
is imaginary, we thus obtain

e�Ẽ��ñi − ñe�� = − n0Te�
k

k��Im �i�k,�k� − Im �e�k,�k��

�� e�̃k

Te

�2

.

This relates the net force density acting on resonant particles
to their dielectric response functions. It is now convenient to
recall the quasilinear wave-energy �“Poynting”� theorem for
drift waves,

�

�t
��k

+ � · Sk + Qk = 0, �12�

i.e., that wave energy density ��k
evolves via divergence of

the wave energy density flux Sk and local dissipation Qk.
Here, ��k

, Sk, and Qk are given, respectively, by

��k
= n0Te�k� ��

��
�

�k

� e�̃

Te

�2

, �13a�

Sk = − n0Te�k� ��

�k
�

�k

� e�̃

Te

�2

, �13b�

Qk = − n0Te�k�Im�����k
� e�̃

Te

�2

, �13c�

where

��k,�� = �i�k,�� − �e�k,�� . �13d�

Equation �12� is a straightforward adaptation of a more gen-
eral result for waves in a dielectric medium to the special
case of drift waves, which we consider here. The result of
Eqs. �12� and �13� is proved in Refs. 41 and 42. Using Eqs.
�12� and �13�, we immediately note that

e�Ẽ��ñi − ñe��R = �
k

k�

�k
Qk = − �

k

k�

�k
� �

�t
��k

+ � · Sk�
thus directly relating the dielectric medium’s force on reso-
nant particles to the evolution of wave energy! It is no sur-
prise to see the proportionality between resonant density im-
balance �ñiR− ñeR� and � ·S �the divergence of the wave
energy density flux� emerge in this theory, since the latter
includes radial wave propagation, which originates in the
polarization charge contribution to quasineutrality, and
which is required to neutralize ñiR− ñeR. Since the spatio-
temporal evolutions of ��k

and Sk are, by construction,

012303-6 Diamond et al. Phys. Plasmas 15, 012303 �2008�

Downloaded 13 Apr 2008 to 132.239.66.164. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



“slow,” i.e., corresponding to envelope scales, we have
��

−1��� /�t��k and �S�−1 ��rS � � �k�, so

e�Ẽ��ñi − ñe��RP = − �
k
� �

�t
�P��W +

1

r

�

�r
�r��r,�

w ��� . �14�

Since P�
w= �k� /�kh��� and �k� /�k�S=�w, consistent with the

simple geometry assumed here, only radial variation of the
envelope is considered. To complete the proof of �MT-I�, we
need to only combine Eq. �14� with Eq. �11�, and note that
�P��RP+ �P��W= ��P��, since wave momentum and nonreso-
nant particle momentum are identical in the frame of the
background plasma. These steps yield

���P��
�t

+
1

r

�

�r
�r��ṽErP̃��RP +� dkvgrP�k

w �� = 0 �15�

which proves the first momentum theorem. Here P�k
w is the

parallel wave momentum density for the wave with the wave
vector k, and radial group velocity vgr. Note that Eq. �15�
eliminates the local force in Eq. �11�, in favor of the mean
radial flux of parallel wave momentum ��r,�

w �. More gener-
ally, Eq. �15� relates the total, fluctuation-induced parallel
force on the plasma to the sum of the fluxes of resonant
particle and wave momentum. Of course, given the disparity
between electron and ion inertia �me�mi�, �P�� is carried
primarily by ions. However we emphasize that no limiting
assumptions concerning the electron response �i.e., “adia-
batic” or “i-�”� were made in the course of this derivation.

The alert reader may notice that the result of Eq. �15�
�i.e., MT-I� does not account for the force exerted on the
plasma due to wave refraction. In particular, given sheared
flows and other profile variations, drift wave trajectories will
bend and refract, so the wave packet momentum will exhibit
a concomitant change in direction.43,44 Of course, since the
waves and dielectric media are �strongly� coupled, the pro-
cess of wave refraction will induce a recoil force on the
plasma. This refractive force will then necessarily change the
plasma momentum, and thus should enter the momentum
budget.45–47 A proper treatment of the refractive force re-
quires an extension of MT-I. We note in passing that the
force which drives the amplification of zonal flow shear is
just the radial component of the refractive force, and in that
case, the net power expended by the refractive force is pre-
cisely the rate of growth of zonal flow energy. The basic
physics and energetics of the refractive force are discussed
further in Appendix B. Here we focus on the derivation of a
momentum conservation theorem which accounts for refrac-
tion effects �i.e., MT-II�.

In order to derive MT-II, it is advantageous to start from
the wave kinetic equation, which effectively constitutes a
Boltzmann equation for the quasiparticle or wave quanta
density N�x ,k , t�, Here, in the context of simple drift wave
models, such as extended Hasegawa-Mima models, the
�x ,k� phase space density which satisfies the wave kinetic
equation is closely related to the potential enstrophy density

= �1+k�

2 �s
2�2 �e�̂k /T�2, since N�x ,k , t�= �1+k�

2 �s
2�2Iw,

where the Wigner distribution function Iw

=�dqeiq·x��̂k+q�̂−k�. The interpretation of 
 as a “quanta

density” follows from the intuition that 
 may be viewed as
a vortex or “roton” density.48–51 The wave kinetic equation is

�N

�t
+ � · ��vg + V�N� + �k · �−

�

�x
�� + k · V�N� = C�N� ,

�16�

where the collision integral may be decomposed as

C�N� = Cw−w�N� + Cw−p�N� .

Here Cw−w�N� corresponds to resonant nonlinear wave-wave
interactions which do not conserve N, while Cw−p�N� corre-
sponds to resonant linear and nonlinear wave-particle inter-
actions. Thus, for �generalized� three wave interaction pro-
cesses arising from quadratic nonlinearity, we can expect
Cw−w�N� to have the form,

Cw−w�N� = �
k�

	C1�k�,k − k��Nk�Nk−k�

− C2�k,k��Nk�Nk
���k−k� + �k� − �k� ,

where conservation of energy and momentum by the micro-
scopic interaction processes require that

� dk� k

�k
�Cw−w�N� = 0

independent of the detailed structure of Cw−w�N�. Note that
the Manley–Rowe relations52 state that while the micro-
scopic interactions do conserve energy and momentum, they
do not conserve quasiparticle number �apart from the impor-
tant exception of induced diffusion53� Cw−p�N�, which repre-
sents wave-particle interaction, is necessarily dissipative,
since quasiparticles exchange energy and momentum with
particles via linear and nonlinear resonant interaction. The
lowest order contributions to the latter occurs, for example,
via the familiar beat wave resonance associated with nonlin-
ear Landau damping �i.e., when �+��= �k� +k���v��.

In order to derive MT-II, we proceed from the k�

“moment” of the wave kinetic equation, which gives

�

�t
�P�

w� +
1

r

�

�r
�r��r,�

w �� −� dk�� dk�

dt
N� +

�k�

�kr
� dkr

dt
N�

= �� dkk��Cw−w�N� + Cw−p�N��� . �17�

Equation �17� describes the evolution of the mean parallel
wave momentum �P�

w�. Note that since the basic wave-wave
interactions conserve momentum, we can immediately write

� dkk�Cw−w�N� = 0, �18�

i.e., wave-wave “collisions” conserve net wave momentum
as a consequence of the k matching or selection rules. In
practice, a concrete demonstration of Eq. �18� for a specific
case requires writing �dkk�Cw−w�N� as a double integral
�dk�dk� symmetrizing k and k�, etc. Detailed examples of
such calculations may be found in Ref. 54. The result of Eq.
�18� still applies to the special case where one element of the
wave triad is a zonal flow, though in that case the parallel
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momentum selection rule k� =k��+k�� degenerates to the iden-
tity k� =k��, since zonal flows have essentially no variation
along the field line. Stochastic straining by zonal flows con-
serves N, as well.

Since the wave-wave interaction process conserves mo-
mentum, the mean parallel wave momentum density equa-
tion may be simplified as

�

�t
�P�

w� +
1

r

�

�r
�r�r,�

w � − �f �
ref� =� dk�k�Cw−p�N�� . �19a�

Here, we see that wave momentum density evolves due to
the combined actions of the mean radial flux of parallel wave
momentum ��r,�

w �, the parallel component of the mean refrac-
tive force �allowing for magnetic shear, i.e., �k� /�kr�0�

�f �
ref� =� dk�� dk�

dt
N� +

�k�

�kr
� dkr

dt
N� �19b�

and the net dissipation of mean wave momentum by all reso-
nant wave-particle interactions, i.e.,

�d�P��
dt

�
diss

=� dk�k�Cw−p�N�� . �19c�

However, since the wave momentum density dissipated by
resonant interaction with the particles is simply the net rate
of change of the resonant particle momentum density, we
immediately have

�d�P��
dt

�
diss

=� dk�k�Cw−p�N��

= −
d

dt
�P��R = −

�

�t
�P��R −

1

r

�

�r
�r�ṽErP̃��� .

�20�

Note that the contribution from the divergence of the reso-
nant particle momentum flux appears here because

�i� it necessarily enters the time rate of change of the
local resonant particle momentum density.

�ii� it is required for a treatment of wave-particle interac-
tions that is consistent with that applied to the dissi-
pation term.

Indeed, point �i� above follows from the fact that wave par-
ticle interaction in drift wave turbulence scatters particles in
radius at the same time it accelerates particles along the field.

Thus Cw−p�N� and �ṽErP̃��R must be treated symmetrically
and consistently, order by order in perturbation theory, as
each is an element of the total wave particle interaction pro-

cess. In principle, both d�P��diss /dt and �ṽErP̃��R contain con-
tributions from all even orders in perturbation theory, and so
may be written in the generic form55

� �ṽErP̃��
d�P��diss/dt

� = �
n
��

k1

�
k2

¯ �
kn

Cn�k1,k2, . . . ,kn�

���̃2�k1
��̃2�k2

¯ ��̃2�kn
����1 + �2

+ ¯ + �n − v��k1� + k2� + ¯ kn��� .

�21�

Here n=1 corresponds to the quasilinear piece, n=2 to the
contribution from nonlinear Landau damping or Compton
scattering, etc. Thus, the irreversibility underpinning of the
n=1 contribution is stochasticity due to overlap of primary
wave-particle resonances, that governing n=2 is stochasticity
due to overlap of beat wave resonances, etc. Since here we
are concerned only with the most basic mean field theory
analysis, we limit �n to only the n=1 term and so, in the vein
of quasilinear theory, retain only the primary resonance ef-

fects in the calculation of �ṽErP̃��.
Proceeding by combining Eqs. �19� and �20� and again

utilizing Eq. �6c� to combine wave and resonant particle mo-
mentum finally leads us to the second or extended momen-
tum conservation theorem �MT-II�, which is

d��P��
dt

+
1

r

�

�r
�r�ṽErP̃�� + r� dk��vgr + Vr�k�N��

=� dk�� dk�

dt
��N� +

�k�

�kr
� dkr

dt
��N� + �� d

dt
k̃��Ñ� .

�22�

Here we have written the mean refractive force as the prod-
uct of the means plus the mean of the product of fluctuations.
MT-II, as given by Eq. �22�, states that the total parallel
momentum density of the particles evolves by radial trans-
port of resonant particle momentum, radial transport of par-
allel wave momentum due to magnetic shear �i.e., which
renders �k� /�kr�0� and by the force exerted on the plasma
due to refraction of waves �i.e. as given in the RHS of Eq.
�22��. Note that the refractive force density is a local mo-
mentum drive, and is not related to the divergence of a stress
tensor, i.e., it represents a local force density exerted on the
plasma, and has not been considered in previous studies.
Clearly, MT-II is more general and inclusive than MT-I. Note
also that if refractive force effects are ignored, the predic-
tions of MT-I and MT-II are identical with regard to macro-
scopics �i.e., stresses�.

At this point, it is appropriate to discuss the physics of
the refractive force in some depth. As mentioned above, the
refractive force is a simple and straightforward consequence
of the fact that bending of wave ray trajectories in a dielec-
tric medium �e.g., plasma� necessarily induces a recoil force
on that medium. The refractive force is not a priori depen-
dent upon dissipation of wave energy, wave breaking, non-
linear transfer or any other “strongly nonlinear” processes.
Note that the refractive force consists of the sum of two
pieces, a mean or coherent piece ���dk� /dt��N�+ ��k� /�kr�
��dkr /dt��N�� and a stochastic piece ����dk̃� /dt�Ñ��. The
coherent refractive force f �,coh

ref is given by
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f �,coh
ref = −� dk������ + k · V���N� +

�k�

�kr
k	�vE���N� .

In practice the first term will occur as a result of poloidal
asymmetry in mean plasma flows or the parameters which
determine the mean wave frequency, whereas the second
term will be relevant in the presence of poloidal flow shear in
sheared magnetic geometry. Also note that for the second
term, since �k� /�kr�k	, the overall term �k	

2, so no addi-
tional poloidal symmetry breaking is required. The stochastic
component of the refractive force may be calculated using a

quasilinear approximation to the mean product ��dk̃� /dt�Ñ�
and the linear response for Ñ. Thus,

Ñq,
 = − R�
 − q · vg���̃ + k · Ṽ�qq ·
��N�
�k

, �23a�

where

R�
 − q · vg� =
��k�

�
 − q · vg�2 + ��k�2
�23b�

is the strain field wave packet resonance function. Here q
and 
 are the wave vector and frequency of the strain field,
respectively. Thus

f �,stoch
ref = − b̂ · Dk

I ·
��N�
�k

, �23c�

where Dk
I is the k-space diffusion tensor,

Dk
I = �

q
qq���̃ + k · Ṽ�q�2R�
 − q · vg� �23d�

and b̂ ·Dk
I is given by

b̂ · Dk
I = �

q
q�q���̃ + k · Ṽ�q�2R�
 − q · vg� . �23e�

Equation �23e� indicates that the correlations between q� and
the other components of the strain field wave vector are criti-
cal to determining various components of the net refractive
force and that the parallel �i.e., poloidal� variation of the
strained field is the ultimate origin of the parallel stochastic
refractive force. This observation immediately suggests that
geodesic acoustic modes �GAMs� are natural candidates for a
physical origin of the refractive force, since on account of
their poloidal variation, they produce a strain field with non-
zero q� and q	. All these considerations suggest a simpler and
more explicit version of �MT-II�, which is just

d��P��
dt

+
1

r

�

�r
�r�ṽErP̃�� + r� dk��vgr + Vr�k�N��

= −� dk����� + k · V��N� +
�k�

�kr
k	�vE���N�

+ b̂ · Dk
I ·

��N�
�k

 . �24�

We now discuss the general structure of the momentum
balance relation and its implications for intrinsic rotation.
More generally, to address the phenomenon of intrinsic rota-
tion demands an affirmative answer to the question of “can

the turbulence sustain a stationary, nontrivial �i.e., peaked�
profile of toroidal rotation in the absence of external
sources?” For intrinsic rotation at an arbitrary radius a, this
requires that a nontrivial profile result from the stationary
solution to Eq. �24�, within r=a. Imposing the standard
boundary condition that fluxes vanish on axis then leads to
the momentum stationarity condition,

��r�ṽErP̃��R + r��r,�
w ���a

= − �
0

a

r�dr�� dk������ + k · V���N�

+
�k�

�kr
k	�vE���N� + b̂ · Dk

I ·
��N�
�k

� , �25�

i.e., that the resonant particle momentum flux at r=a plus the
wave momentum flux at r=a balance the refractive force at
r=a. The resonant particle momentum flux is calculated in
detail in Sec. IV. We can, however, expect it to have a struc-
ture of the general form,

�ṽErP̃��R = − D�

�

�r
�P�� + ��r,��R

ND, �26a�

where the nondiffusive piece due to resonant particles
��r,��R

ND may be further decomposed into convective and re-
sidual stress components, i.e.,

��r,��R
ND = Vr�P�� + ��r,��R

residual. �26b�

Note that further information or assumptions concerning the
specific dynamical model are required to separate the particle
flux and flow transport �stress� contributions to ��r,��R

ND. In
general, however, sustaining a nontrivial �positive� flow pro-
file requires at least one of

��r,��R
ND � 0, �27a�

i.e., either inward resonant convection of momentum
�Vr�0� or an inward resonant residual stress ��r,��R

residual

�0, or

��r,��R
w � 0 �27b�

i.e., either an inflow of positive, or an outflow of negative,
wave momentum, or

�
0

a

f refdr � 0,

i.e., a net refractive force.
It is interesting to note that the microscopic irreversibil-

ity which underpins �ṽErP̃�� is stochasticity of resonant par-
ticles, while that which underlies ��r,��R

w is an overlap of
wave resonances or drift wave ray chaos resulting from in-
teraction with zonal flow or GAM shears. Ray chaos is also
the underpinning of the stochastic refractive force.

Further progress clearly requires concrete calculation of

��r,�
w �, the mean wave momentum flux, and of �ṽErP̃��, the

resonant particle momentum flux. Loosely speaking, one can
expect the former to be more important for fluid-like insta-
bilities and/or in regimes of strong turbulence, while the lat-
ter to be more important in kinetic regimes near marginality,
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i.e., for stiff profiles. We expect the refractive force to be
significant only when poloidal symmetry is strongly broken,
or when electric field shear is strong. In practice, this is
likely to occur only at the plasma edge or in transport barri-
ers. Given the special nature and complexity of the edge
plasma transport and barrier dynamics, we postpone further
discussion of the effects of the refractive force on rotation to
a future paper.

III. CALCULATING THE WAVE MOMENTUM FLUX:
A CHAPMAN–ENSKOG APPROACH

In this section, we present the concrete calculation of
��r,�

w �, the mean radial flux of parallel wave momentum. This
is one of the two principal components of the total momen-
tum flux, and is most important in regimes of strong,
hydrodynamic-like turbulence.

The key physical idea which enables us to systematically
calculate ��r,�

w �=�dk�vgrk�N� is that waves propagate while
being scattered by nonlinear interaction. Hence we develop
an approach similar to that used to describe quasiparticle
transport processes in solids and Fermi liquids.56 Hence, it is
useful to construct a kinetic theory of the wave population
density N in the phase space of k and x. To this end, we first
list and order the basic time and space scales. Drift wave
packets propagate radially at vgr=−2k	kr�s

2v* / �1+k�
2 �s

2�2,
where v*=�scs /Ln is the diamagnetic velocity. Thus a drift
wave packet will:

�i� Propagate one radial wavelength in

��prop�k � �krvgr�−1 � −
�1 + k�

2 �s
2�2

2k	kr
2�s

2v*
� �k

−1.

�ii� Scatter or decay via nonlinear interaction in

��decay�k � �k�
2 D�−1 � �k

−1,

where the equalities follow from using the “mixing
length” prediction of fluctuation levels, but should be
regarded as crude estimates, only. Zonal flow shearing
will yield a roughly comparable decay time. It is use-
ful to note that where fluctuation levels are compa-
rable to the mixing-length level, ��prop�k���decay�k
follows directly from ṽ�v*. For smaller fluctuation
levels, i.e., �ṽ�v*�, then ��prop�k� ��decay�k, so wave
transport is the faster process.

�iii� Propagate one fluctuation intensity gradient scale
length distance �LI, where LI

−1��N�−1� �N� /�r� in

��prop�LI
� �krLI���prop�k.

These time scales are summarized in Table I. Hence, for the
“typical” regime where krLI�1, we are justified in applying
the ordering

��prop�k � ��decay�k � ��prop�LI
.

This implies that a drift wave packet will be nonlinearly
scattered much more rapidly than it will transit one intensity
profile scale length. Thus, drift wave packets can be thought
of as having “short mean free path” or, in the language of
radiation hydrodynamics, as satisfying the conditions for a

regime of large optical depth.33 Central to this ordering is the
assumption of a clear separation of scales between the radial
wavelength �kr

−1� and/or correlation length �rc on the one
hand, and the intensity profile scale length LI on the other. LI

may be loosely estimated as L� �i.e., a typical profile scale
length�, since the turbulence intensity profile is supported by
the heat and particle fluxes which produce the profiles of
plasma temperature, density, etc. Alternatively put, since T�r�
decays with radius for central deposition, �N�r�� must in-
crease with radius �see Fig. 1�. This is both independently
plausible and also consistent with the empirical finding that
the fluctuation intensity profile is almost always observed to
increase with radius.57 One possible exception to the as-
sumed LIkr�1 ordering would be the instance of a fully
developed strong transport barrier.

Given time and space scale ordering discussed above,
we can formulate a Chapman–Enskog expansion approach to
the calculation of �r,�

w . The basic idea is to write

N = �N�x,k,t�� + �N ,

where �N� is the slowly varying “mean” wave population
density, and �N is the perturbation to it induced by gradients
of �N� in radius and k. Since, �N will be shown to be pro-
portional to ��N� /�r and ��N� /�kr, it ultimately produces the
net flux of wave momentum. As usual, �N is calculated per-
turbatively, exploiting the time scale ordering.

Proceeding, we hereafter ignore the mean radial convec-
tion, and write the wave kinetic equation in the form,

TABLE I. Time scales for the wave population response.

Time scale Definition

Oscillation time ���k
−1

Self-propagation �time to propagate �r� ��prop�k��krvgr�−1

Decay time �time of nonlinear scattering� �decay��k�
2 D�−1

Intensity gradient scale propagation time ��prop�LI
�LI /vgr

��krLI��propk

FIG. 1. Cartoon of radial profile of temperature and turbulence intensity.
Solid arrows denote outward flux of heat, whereas the squiggles indicate an
inward flux of wave intensity.
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�N

�t
+ vg · �N −

�

�x
�k · V�

�

�k
N = C�N� , �28a�

where

N = �N� + �N . �28b�

We assume the “collisions” �i.e., the nonlinear wave-wave
and wave-particle scattering events� underpinning C�N� oc-
cur with collision frequency �Tk���k�1 / ��decay�k �where
��k is the decorrelation rate for scale k�, and that
vgr /LI���k. More precisely, �Tk is the characteristic rate of
wave-wave energy transfer or wave particle scattering, as
represented by C�N�. Here C�N� includes both Cw−w and
Cw−p and all relevant orders �i.e., both linear and nonlinear�
of each type of scattering process. Thus, to lowest order, Eq.
�28a� is just

C�N� = 0 �29a�

which formally defines the mean �N� as

N�0� = �N� . �29b�

The restrictions and caveats concerning the structure of �N�
require a brief discussion. In practice, the mean �N� is de-
fined by the balance of linear growth with coupling to dissi-
pation via nonlinear wave-wave and wave-particle interac-
tion. Here “wave-wave interaction” includes the possibility
of zonal shearing, and �T is the characteristic rate for nonlin-
ear relaxation to this mean state. Obviously, �Tk���k, the
turbulence decorrelation rate. In general, we can expect �N�
to have a power law structure, in between limits set by low-
k �i.e., flow damping� and high-k �i.e., Landau damping and
collisions� dissipation. Thus, there may be some limitation
on which higher order moments of �N� actually exist without
sensitive dependence upon dissipation. We defer detailed dis-
cussion of this subtle question to a future publication. �N�
must be symmetric in kr, since there should be no intrinsi-
cally preferred direction of wave packet propagation or the
condition of stationarity of �N� would be violated. Thus, �N�
makes no contribution to ��r,�

w �. Since N= �N�+�N, to next
order we have

�

�t
�N + vg · ��N −

�

�r
�k	�vE��

�

�kr
�N − �T�N

= − vgr
��N�
�r

+
�

�r
�k	�vE��

��N�
�kr

�30a�

with k	→m /r, where m is the poloidal mode number. Here
we have assumed that the mean flow is predominantly a
sheared E�B poloidal flow, so

k · V = k	�vE� . �30b�

Also, we have employed a Krook approximation to C�N�,
i.e.,

C�Nk� � − �Tk�Nk − �N�� = − �Tk�Nk. �30c�

This states that the effect of wave-wave or wave-particle
collisions on N is simply to drive it to relax to the mean �N�.
Recall that the Manley–Rowe relations state that C�N� does
not need to conserve the quanta number, so a Krook model

will suffice. Then, in the limit of strong collisionality, where
�T�vgr /LI, 
, k	�vE�� /kr, etc., we have

�N = −
vgr

�Tk

��N�
�r

+
1

�Tk

�

�r
�k	�vE��

��N�
�kr

. �31�

Here �N, the excursion from the uniform “equilibrium” dis-
tribution is driven by both ��N� /�r and ��N� /�kr, i.e., the
quanta density profile gradients in both radius and radial
wave-number. Substituting �N from Eq. �31� into ��r,�

w � then
gives

��r,�
w � =� dkvgrk��−

vgr

�Tk

��N�
�r

+
k	

�Tk

��vE�
�r

��N�
�kr


= −� dkk�� vgr

2

�Tk

��N�
�r

+
�

�kr
� vgr

�Tk

��vE��k	�N� ,

where we have integrated by parts to rewrite the second term
on the RHS. It is apparent that the wave momentum flux
consists of two pieces. The first is a Fickian flux, driven by
��N� /�r with effective diffusivity Drad�vgr

2 /�Tk. The second
is a flow shear driven “mobility,” proportional to the diver-
gence in kr of the wave packet group velocity. The second
term arises from the combined effects of shearing, which
tends to increase kr by straining, and the presence of a popu-
lation density profile in kr, i.e., ��N� /�kr. Thus ��r,�

w � may be
written in the approximate diffusion-convection form,

��r,�
w � = − Dw

�

�r
�P�

w� + Vw�P�
w� , �32a�

where the wave momentum diffusivity is

Dw �
� dk� vgr

2

�Tk

��N�

� dk�N�
�32b�

and the convection velocity is

Vw = −

� dk� �

�kr
� vgr

�Tk

�k	�vE����N�

� dk�N�
. �32c�

Of course, the first term on the RHS of Eq. �32a� gives the
diffusive flux, while the second term drives the convective
flux. Given the identity between wave-momentum density
and nonresonant particle momentum density, ��r,�

w � directly
implies a corresponding flux of nonresonant particle momen-
tum. However since the convention is to define transport
coefficients such as diffusion, convection, etc. in terms of
how they act on moments of the particle distribution func-
tion, ��r,�

w � ultimately is classified as a contribution to the
residual stress part of the radial flux of parallel momentum.
Finally, we note that, at this stage of the calculation
the origin of symmetry breaking �i.e., the origin of
�k��=�dkk��N� /�dk�N��0� has not yet been addressed.
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The physics of the first ��N� /�r-driven contribution to
��r,�

w � is straightforward, and describes diffusion of wave
momentum due to propagation and scattering of the wave
packets which carry the momentum.33 As shown in Fig. 2,
since vgr�kr �as ��−k�

2 �s
2 for drift waves�, a wave packet

originating at a particular radius r will propagate a distance
�mfp�vgr�c before undergoing absorption and re-emission as
part of the nonlinear wave-wave interaction process. This
immediately implies the existence of a diffusive flux of wave
momentum ��r,�

w �D=−Drad� �P�� /�r with Drad�vgr�mfp

�vgr
2 /�T. It is important to realize that this flux is due to

wave radiation �albeit in the short mean free path limit�
rather than turbulent mixing. Interestingly, since, for “typi-
cal” mixing length type fluctuation levels, vgr�v*, �T��k
�cS /L�, we have Drad�DGB so that the radiative diffusivity
Drad is similar to the familiar gyro-Bohm turbulent diffusiv-
ity! This, together with the presence of a heat flux driving
and the fact that nT���, explains why the edge peaked
intensity gradient does not simply collapse via wave radia-
tion. It also explains the long-standing difficulty in disentan-
gling wave transport processes38 from eddy transport pro-
cesses, since transport of both heat and wave intensity will
occur at a similar rate. One interesting consequence of this
wave quanta diffusion process is that since the turbulent in-
tensity field is always peaked toward the edge, there will
always be a concomitant inward diffusive flux of wave
quanta. This implies a spreading of edge turbulence inward
into the core by radiative diffusion, as originally predicted by
Kadomtsev.58 Though parallel momentum density and wave
momentum density are, of course, different moments of �N�,
a similar inward diffusive flux of wave momentum from the
edge can also be expected. Indeed, given that the parallel
wave momentum flux corresponds to a portion of the parallel
Reynolds stress �ṽrṽ�� and that stress induced change in mo-
mentum necessarily involves an intensity gradient, it is no
surprise that ��r,�

w � contains an intensity gradient dependent
contribution. This is significant since several symmetry
breaking mechanisms may be at work in the edge plasma,15

so such inward quanta diffusion would transmit the broken
symmetry, as well.

The physics of the second, ��N� /�kr driven contribution

to ��r,�
w � �from which the convective wave momentum flux

originates� is due to the distortion in N induced by shearing,
which tends to increase kr. Formally, �N��ck��kr /�t�
����N� /�kr���ckk	�vE��� �N� /�kr, so ��r,�

w ���dkk�vgr�N is
just the flux of wave momentum which occurs during the
change in population-density induced by a shearing event.
The key element here is kr dependence, i.e., shearing alters
kr, and since both vgr and �N� are functions of kr, a flux of
wave momentum density results. Thus, one way to under-
stand this convective momentum flux is as a process of wave
“wind-up” due to shear, as shown in Fig. 3. Note, however
that this effect is conceptually distinct from its better known
counterpart related to wind up of k� with kr, which we dis-
cuss later in the context of symmetry breaking. Alternatively,
an integration by parts gives

��r,�
w �convective �� dk� �

�kr
� vgr

�Tk

��k	�vE���N� ,

thus linking the convective flux to the kr dependence of vgr.
This suggests that when shearing alters kr, the variation in
wave packet propagation speed �i.e., the “compressibility” of
vgr with respect to kr� will then induce a net wave momen-
tum flux. Note that since vgr�k	, ��r,�

w �convective is even in k	,
so no additional poloidal symmetry breaking �i.e., other than
that driven by �vE�� � is required in order to induce a flux.
Finally, it is useful to observe that since vgr�v*, ��r,�

w �
�v*�vE��, so the off-diagonal wave-momentum flux is de-
termined by the product of the electric field shear and the
mode propagation velocity �v*e or v*i�. Thus a sudden
change or bifurcation in the convective momentum flux can
be induced by either

FIG. 2. Cartoon of radial profile of turbulence intensity. Wave propagation
direction is equally likely. However, inhomogeneity in turbulence intensity
provides a means of net flux of wave intensity. Here we consider regimes in
which lmfp is small in comparison to the profile variation.

FIG. 3. Contours of Nk in the k	−kr plane. The broken line corresponds to
an initial isotropic case, the solid line to the spectrum after being refracted
by mean shear flow. It is apparent that the wave population in regions I and
III increases while regions II and IV decrease.
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�i� An abrupt change in �vE��, as in an electric field shear
induced transport bifurcation, as observed for ex-
ample in L-H mode transition and ITB formation.

�ii� A change in mode propagation direction, such as
would occur along with a change in the mode popu-
lation composition. One example of this might be a
change from predominance of v*e-direction propagat-
ing waves �i.e., electron drift waves� to v*i-direction
propagating waves �i.e., ion drift waves or ITG
modes� as the density n exceeds the threshold for ex-
citation of ITG modes at saturation of energy confine-
ment in OH plasmas.

Note that momentum transport bifurcations originating with
a change in Vw thus can occur either in connection with a
change in confinement �i.e., �vE�� increases, thus suppressing
turbulence and forming a transport barrier� or as a change in
momentum transport at roughly constant thermal energy con-
tent. We also comment that shearing and wave refraction can
also induce a convective flux of �N�, as well as �P��, and so
may play a role in the dynamics of turbulence spreading.
Finally, we note that the total momentum flux should include
the contribution from convection by radial flows �i.e., due to
streamers, for example� and so is

��r,�
w � =� dkk���Vr��N� −

vgr
2

�Tk

��N�
�r

+ vgr
k	

vTk

�vE��
��N�
�kr

 . �33�

All the results given up until now have been calculated
for the regime of strong scattering, where 
, vgr /LI,
k	�vE�� /kr��Tk

. However, in regimes of weaker turbulence
and/or sharper intensity or electric field gradients, the in-
equality above may break down, so that �mfp�LI, etc. This
forces us to confront the analog of flux limited radiative
transfer. In that case, and considering the spatial flux, for
example, the stationary, gradient driven perturbation would
follow from

�vg · � + �Tk
��N = − vgr

��N�
�r

�34a�

so the response �N would no longer be local, but instead take
the integral form

�N = − �
ra

r

dr�K�r,r�,t�vgr
��N�r���

�r
, �34b�

where K�r ,r� , t� is a nonlocal influence kernel of width �mfp,
which is obtained by inverting the LHS of Eq. �34a�.59 Con-
tinuing in this vein, a crude approximation would eventually
yield a tractable form for Drad, such as

Drad � vgr
2 � �T

�vgr/LI�2 + �T
2� . �34c�

Thus for smooth intensity profiles and strong scattering
where �T�vgr /LI, etc., Drad�vgr

2 /�T, as before. On the other
hand, for steep profiles and/or weak scattering �with conse-
quent long �mfp�,

Drad �
vgr

2 �T

�vgr/LI�2 � �TLI
2, �34d�

as in the case of flux limited transport.33 Similar approximate
forms which ensure proper behavior in the regimes of long
packet mean free path, weak scattering, strong shearing or
fast variation can easily be derived. In general, in such cases
the response is nonlocal in space and/or time, so �N is given
by a response integral. In the limit of very long packet mean
free path, a coherent wave-packet dynamics approach, using
integration along rays �in the spirit of Longuett-Higgins and
Stewart,60 and later Mattor and Diamond61 in the MFE con-
text� becomes advantageous.

Up until now, we have not addressed the origin of sym-
metry breaking, i.e., the key question of what sets the net
mean k� �i.e., �k���, which appears so prominently in the
wave-momentum flux. Indeed, �k�� also plays an important
role in the resonant particle momentum flux, particularly in
the residual stress. One advantage of the general framework
we present here is that it allows us to address and compare
several possible symmetry breaking mechanisms and quan-
titatively explore the competition between them. In contrast,
all previous works have postulated a single symmetry break-
ing mechanism a priori.

The approach to �k�� is best formulated by considering
the mean field wave kinetic equation for �N�, which is

��N�
�t

+
1

r

�

�r
�r��vgr + Vr�N�� −

�

�kr
�k	�vE���N��

−
�

�k�

�k��v����N��

= �k · �Dk
J · �k�N�� + 2�k�N� + �CNL�N�� , �35�

where the first term on the RHS accounts for random strain-
ing, the second for linear wave growth and the third for
nonlinear wave-wave scattering. Then, taking �dkk� to ob-
tain a general evolution equation for �k�� yields

�

�t
�k�� = −

1

r

�

�r
�r��r,�

w �� −� dk� �k�

�kr
�k	�vE���N�

−� kb̂ · Dk
I · �k�N� + 2� dkk��k�N� − �NL�k�� .

�36a�

Here the last term on the RHS reflects the net decay of wave
momentum by coupling to dissipation via nonlinear interac-
tion of all sorts. Heuristically �NL should be thought of as a
nonlinear decay rate for parallel wave momentum. Clearly
�NL is comparable to �T but not necessarily precisely equal
to it. Thus, at steady state, �k�� satisfies

�NL�k�� = −
1

r

�

�r
�r��r,�

w �� −� dk� �k�

�kr
�k	�vE���N�

−� dkb̂ · Dk
I · �k�N� + 2� dkk��k�N� �36b�

so the net local wave momentum density is determined by
the competition between nonlinear decay and:
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�i� The local inflow or outflow of wave momentum den-
sity by transport, given by −�r · ��r,�

w �. For example
this process would account for growth of local wave
momentum density in the core plasma as a result of
influx from an edge or SOL momentum source, as
depicted in Fig. 4.

�ii� The enhancement of �k�� via the synergistic interac-
tion of E�B shearing ��vE��� and magnetic shear �re-
quired for �k� /�kr�0�. This effect, represented by
−�dk��k� /�kr�k	�vE���N�, captures the now well-
known process of E�B shear-generated shifting of
the spectrum off the resonant surface, which has been
studied by many authors.27,62 In the eikonal theory
formulation given here, that process appears naturally
as one whereby k� “winds up” in response to an in-
crease in kr induced by mean velocity shear. Magnetic
shear �i.e., �k� /�kr�0� is absolutely essential to the
viability of this process. Note also that since �k� /�kr

�k	, the overall term �k	
2, so no additional poloidal

symmetry breaking is required.
�iii� The input of wave momentum by the stochastic re-

fractive force. This mechanism is driven by fluctuat-
ing mesoscale flows with parallel structure induced by
poloidal asymmetry. Geodesic acoustic modes
�GAMs� are thus a natural candidate. Hence, symme-
try breaking by the GAM-induced refractive force is a
possible wave momentum source in the plasma edge,
where GAM activity is strong. The relation between
GAM activity and intrinsic rotation has not been ex-
plored and merits further study.

�iv� Asymmetry in growth. This effect captures the possi-
bility that one sign of k� may be preferred, dynami-
cally. Such a phenomenon can occur when parallel
velocity shear is present. This mechanism has been
advocated by Coppi.63

The symmetry-breaking mechanisms are summarized in
Table II. A virtue of this general approach to the question of
symmetry breaking is that it allows quantitative comparisons
between competing mechanisms. For example, by comparing
the first and second terms on the RHS of Eq. �36b�, one
could determine the strength of the electric field shear re-
quired for the “shearing” mechanism of local symmetry
breaking to exceed the influx of net wave momentum from

neighboring regions, such as the edge. Comparisons such as
these will be very useful in understanding the dynamics of
momentum transport bifurcation, changes in intrinsic rota-
tion and the relation of these two phenomena to changes in
confinement.

This section has presented a rather lengthy reformulation
of the quasilinear theory of momentum transport by nonreso-
nant particles in terms of wave-momentum transport. The
skeptical �and tired!� reader is no doubt wondering “just
what have we gained by all this?.” The answer to this very
reasonable question is threefold, namely:

�i� Since nonresonant transport is fundamentally a wave
process �i.e., associated with particle “sloshing”�, it
should, in principle, be formulated in terms of wave
dynamics. This approach, in the vein of radiative
transfer and radiation hydrodynamics, accomplishes
precisely that! Ultimately, nonresonant transport is re-
lated to wave population gradients in both x and k,
with radiative transport coefficients and correlation
times set by wave-wave interaction. A novel off-
diagonal momentum flux contribution driven by �vE��
was identified, as well.

�ii� The origin of the irreversibility which underpins the
stationary state counterpart of the nonresonant quasi-
linear flux is clearly identified.

�iii� A systematic way to assess the relative strength and
importance of several possible competing symmetry
breaking mechanisms has been developed.

Finally we note that these ideas, approaches, and methods
may also be useful in the study of nonlocality phenomena in
turbulent transport. In particular, they suggest one route to-
ward a systematic theory of turbulence spreading.

IV. CALCULATING THE RESONANT PARTICLE
MOMENTUM FLUX

In this section, we present the calculation of the parallel
momentum flux carried by resonant particles. In contrast to
the calculation of the nonresonant portion, calculating the
resonant particle momentum flux is relatively straightfor-
ward and follows from a direct application of methods famil-
iar from quasilinear theory.

FIG. 4. Sketch of influx of wave momentum from the SOL.

TABLE II. Mechanisms of k�-symmetry breaking.

�i� Radial flux of wave momentum

• possible influx of momentum from scrape off layer
• potentially critical in edge region, close to symmetry

breaking
�ii� E�B shearing

• requires magnetic shear, i.e., �k� /�kr�0
• critical in or near barrier regions, either pedestal or

ITB, but not limited to these
�iii� Growth asymmetry ���+k�����−k���

• may enter via parallel velocity shear
�iv� Refraction by GAMs

• likely significant near edge
• largely unexplored
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The quasilinear gyrokinetic equation for the evolution of
the resonant particle �i.e., ion� momentum is just

�

�t
�P��R +

1

r

�

�r
�r��r,�

R �� =� d3vv̇� f̃ i
R, �37a�

where the resonant particle momentum flux is

�r,�
R = �ṽErP̃�i� = min0� d3vv�

dr

dt
f̃ i

R �37b�

and f̃ i
R is the resonant, linear ion response. As shown in Sec.

II, the RHS corresponds to momentum exchange between
waves and particles and cancels identically with its counter-
part involving Cw−p�N� in the k� moment of the wave kinetic
equation. Hence, the RHS is hereafter neglected, and we
need only focus on ��r,�

R �. As usual in quasilinear theory, we

simply plug the resonant linear response f̃ i
R into ��r,�

R � to

calculate the flux. The linear response f̃ i,k
R is

f̃ i,k
R =

− J0���
�k − �EB − k�v� + i�

cs
2� k	

�ci

��Fi�
�x

+ k�

��Fi�
�v�

 e�̃k

Te
,

�38�

where ��k��� and �EB�k	�vE�. After considerable �albeit
straightforward� algebra we obtain the resonant ion momen-
tum flux �whose form agrees with Eqs. �26a� and �26b�
above�

��r,�
R � = n0mi�− ��

�

�r
�v�� + Vr�v�� + S� , �39a�

where for a shifted Maxwellian �f�,

�� = �2�
k

�k	�i�2 vti

�k��

2�0�b�e−
2� e�̃k

Ti

�2

, �39b�

Vr =�

2 �
k

�k	�i�2 vti

�k��
1

Ln
�0�b�� e�̃k

Ti

�2

e−
2

��1 −
�i

�i
crit −

�̄k

�*i
− �i


2 �39c�

and

S = ��
k

�k	�i�2vti
2

Ln

1

�k��

�0�b�� e�̃k

Ti

�2

e−
2

��1 −
�i

�i
crit −

�̄k

�*i
− �i


2 . �39d�

Here the notation is standard, so �i
crit=2�1+2b�1− I1 / I0��−1,


= �̄k /�2k�vti, b=k�
2 �i

2, I0 and I1 are the modified Bessel
functions, v*e,i are the electron and ion diamagnetic
velocities, �̄k is the Doppler shifted wave frequency defined
by �k−�EB� �̄k+k��v��, and �*e,i=k	v*e,i, �=Te /Ti, �0

= I0e−b, etc.
Some discussion of the transport coefficients ��, Vr, and

S is appropriate at this point. Predictably, ����i but
����i, on account of the structure of resonant coupling
to the spectrum of wave phase velocities. �� �and obviously,

the entire resonant particle flux� decays rapidly
��exp�−
2�� for nonresonant particles, and may be written
as ����ṽE

2��ac, where �ac is set by the dispersion in the
distribution of the ion transit rate. Of course, ���DGB for
“mixing length estimate” fluctuation levels. The convection
velocity Vr is rather sensitive and model dependent. Vr is
inward �corresponding to a pinch� for ITG modes in the reso-
nant regime near threshold ��
 � �1�. For regimes far from
threshold �
�1� Vr is necessarily outward, however as
noted above, the magnitude of this term is then negligible.
Near marginality, but for electron drift waves, the sign of the
convective term depends sensitively on �i, and requires a
quantitative description of the microturbulence spectrum.
Note that the convective term scales as Vr /���1 / �
2L��, a
profile scale length. Thus, the resonant particle pinch
complements the nonresonant turbulent convection �TurCo�
pinch,23 derived for toroidal geometry. The latter is nonreso-
nant �and so must represent wave transport�, is inward for
electron drift waves, can attain either sign �depending on
plasma parameters� for ITG modes and has Vr /���1 /R
�i.e., O��� smaller�, but is insensitive to the resonance func-
tion. In other words, if the percentage weighting of resonant
particles is lower than �, TurCo provides the main convec-
tion effect. On the other hand, near marginal stability, where
the percentage of resonant particles is high, the resonant par-
ticle pinch is the primary cause of convection. Furthermore,
near marginality ��̄k��*i� and �
2 � �1, so that

Vr

��

�
1


2

1

Ln
�1 −

�i

�i
crit ,

so that for unstable ITG, the �Ti driven pinch is inward in
rough agreement with Ref. 21, but the �n driven pinch is
outward, opposite to the nonresonant pinch predicted in Ref.
22. Considering now the third term in the resonant momen-
tum flux given by Eq. �39a�, since S /Vr�
vti, S must
vanish in the absence of symmetry breaking �i.e., S→0 as
�k��→0�. It is also clear, for regimes of finite symmetry
breaking, the sign of the residual stress follows identical
rules to that of the resonant particle convection term, but
multiplied by sgn��k���, which is determined by Eq. �36a�.
Also, it is readily apparent that the residual stress is a much
broader concept than that encountered while considering
E�B shearing effects on momentum transport. More gener-
ally, it is clear that S emerges naturally while constructing
the quasilinear theory of momentum transport in the pres-
ence of symmetry breaking ��k���0�.

Here we note that the above result is in agreement with a
similar calculation of the resonant particle flux performed in
Ref. 21. However, we emphasize that while the resonant par-
ticle flux contains a host of tantalizing nondiffusive terms,
neglecting the wave momentum flux—as was done in Ref.
21—is in general not justified since the relative magnitude of
the resonant particle flux in comparison to the nondiffusive
wave momentum flux is strongly parameter dependent. Note
that the results in Ref. 21 do not exhibit an apparent mode-
dependency which is obvious from the standard calculations
using the gyrokinetic equation. We also note that the basic
scaling Vr /���1 /
2�
2L�� is suggestive of an underlying
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physical mechanism which does not depend on toroidicity
�i.e., exists in simpler geometry�, leaving some doubts on the
scaling with respect to Ln proposed in Ref. 22. Furthermore,
the critical role of wave momentum is highlighted when one
considers that by neglecting this component, the RHS of Eq.
�37a� �which corresponds to wave-particle interactions, and
is generally nonzero� is not cancelled by its counterpart in
the wave momentum equation. Thus, any description of mo-
mentum transport purely in terms of resonant particle evolu-
tion leaves an unaccounted for sink/source of momentum in
the mean momentum evolution equation! Finally, it should
be noted that this analysis has not addressed the nature of
particle transport or the nonadiabatic electron response. Con-
sidering these will surely introduce additional momentum
transport effects related to the interplay of particle and mo-
mentum transport. Such cross coupling is discussed further
in Refs. 24 and 25.

V. IMPLICATIONS FOR MOMENTUM TRANSPORT
PHENOMENOLOGY

Until now, we have focused on the general structure of
the theory of momentum transport. Here we discuss the im-
plications for and applications of, the theory to several as-
pects of the phenomenology of toroidal momentum transport
in tokamaks. We proceed by first summarizing the structure
of the predicted momentum flux, first discussing its implica-
tion for quasistationary momentum transport phenomena and
then for momentum transport bifurcation phenomena. De-
tailed modeling of specific cases is left to future papers.
Here, rather, we explore the general scope of potential appli-
cations which are possible within this theory.

The principal results obtained so far are the stationary
state values of the radial flux of parallel momentum ��r,�

w �,
the evolution equation for �k�� �which links symmetry break-
ing to dynamics�, and the resonant particle parallel momen-

tum flux �ṽErP̃��R. These are, respectively,

��r,�
w � =� dkk���Vr�N −

vgr
2

�Tk

��N�
�r

+ vgr
k	

�Tk

�vE��
��N�
�kr

 ,

�40a�

�

�t
�k�� + �NL�k�� = −

1

r

�

�r
�r��r,�

w ��

−� dk� �k�

�kr
�k	�vE���N�

−� dkb̂ · Dk
I · �k�N� , �40b�

�ṽErP̃��R = n0mi�− ��
R �

�r
�v�� + Vr

R�v�� + SR� , �40c�

where

��
R = �2�

k

�k	�i�2 vti

�k��

2�0�b�e−
2� e�k

Ti
�2

, �40d�

Vr =�

2 �
k

�k	�i�2 vti

�k��
1

Ln
�0�b�� e�̃k

Ti

�2

e−
2

��1 −
�i

�i
crit −

�̄k

�*i
− �i


2 , �40e�

S = ��
k

�k	�i�2vti
2

Ln

1

�k��

�0�b�� e�̃k

Ti

�2

e−
2

��1 −
�i

�i
crit −

�̄k

�*i
− �i


2 . �40f�

The total turbulent momentum flux is conventionally ex-
pressed for purposes of data analysis and modeling in the
form

��r,�
T � = n0m�− ��

�

�r
�v�� + Vr�v�� + S� , �41�

where �� is the diffusivity �i.e., turbulent viscosity account-
ing for the radial scattering of toroidal flow�, Vr is the radial
convection velocity �i.e., pinch, if inward�, and S is the re-
sidual stress, which arises since waves and particles can ex-
change momentum. S has no counterpart in the particle flux.
Loosely speaking, anomalous electron-ion energy coupling
might be thought of as a process analogous to S in the energy
balance, though residual stress accounts for ion-wave mo-
mentum exchange, rather than ion-electron momentum ex-
change. Both anomalous thermal transfer and residual stress
�related to anomalous momentum transfer� are processes me-
diated by waves. Pending possible re-expression of ��r,�

w � in
terms of �v��, Eq. �40a� implies that

�� = ��
R ,

Vr = Vr
R,

S = SR + ��r,�
w �

so the momentum diffusivity and the convection velocity are
carried primarily by resonant particles, while the residual
stress is supported by both resonant particles and waves.
Note that the residual stress is usually neglected in traditional
“D and V models,” but can indeed be the dominant off-
diagonal contribution to momentum transport, particularly in
regimes of strong turbulence away from marginality. Surely
the most basic message of this section is the need to address
the residual stress contribution to the momentum flux.

We first discuss the implications of the theory for trans-
port of momentum in quasistationary states. Obviously,
����i but ����i, in accord with all experimental results.
Inward convection �i.e., Vr�0, a momentum pinch� due to
resonant transport is predicted for profiles which are “stiff”
to ITG turbulence �i.e., near marginal�. Here V /���1 /L�,
but we must emphasize that both the magnitude and the sign
of Vr are very sensitive to parameter variations and must be
studied quantitatively in order to meaningfully apply the
theory to perturbative transport experiments, such as those of
Yoshida et al. on JT-60U.12 We again note that the resonant
ion pinch discussed here is complementary to the nonreso-
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nant TurCo pinch discussed in Ref. 23. It is very important,
however, to note that the residual stress S can drive inward
nondiffusive momentum transport in addition to Vr. Both
resonant and nonresonant particles can contribute to S. A
nearly universal contribution to S is the radiative diffusive
flux of wave momentum ��−Drad� �P�

w� /�r�, which is in-
ward, since fluctuation intensity tends to peak toward the
outside �i.e., �N� and �P�� increase while T�r� and n�r�, etc.
decrease�. Also, the edge region is replete with potentially
viable symmetry breaking mechanisms, so �k��0� there.
Thus, inward diffusion of wave momentum is clearly a ro-
bust candidate mechanism to support residual stress contri-
butions to the off-diagonal momentum flux. However, we
hasten to add that electric field shear may also contribute to
the inward momentum flux via S, as should be apparent from
Eq. �40a�. Indeed note that �vE�� can drive a nondiffusive
momentum flux even if electric field shear is not the princi-
pal symmetry-breaking mechanism which determines �k��.
This is due to the fact that flux and symmetry breaking of
�k�� are distinct in this theory, though both operate via �vE��.

Turning to the interesting phenomenon of momentum
transport bifurcations, we focus primarily on the wave mo-
mentum flux, since this is the most relevant to strong turbu-
lence regimes from which bifurcations initiate, and since
��r,�

w � is clearly sensitive to electric field shear, which is a
key bifurcation order parameter. We remind the reader that
momentum transport bifurcations related to a change in the
structure of the momentum flux have been observed both at
the edge and in the core of tokamak plasmas. In general, it is
clear from Eqs. �40a� and �40b� that both electric field shear
and fluctuation profile affects are important in regulating the
local wave momentum flux. Electric field shear enters both
as a symmetry breaking mechanism, which along with mag-
netic shear renders �k���0. �vE�� also acts as a direct driver
of ��r,�

w � with the multiplicative factor k	�vgr /�kr, which is
mode phase velocity dependent. Of course, electric field
shear also regulates fluctuation levels. Thus, we see that a
generic scaling is ��r,�

w �� ŝ��vE����vph�I�, where ��1→2.
Here I is the fluctuation intensity level, I�r�. The fluctuation
profile structure, often associated with the edge, is also
very relevant. Radiative diffusion of wave momentum
��−Drad� �P�� /�r� can produce an influx of wave momentum
from the edge into the core. Similarly, −� · ��r,�

w � can also act
to produce or enhance symmetry breaking �i.e., �k��� and
wave momentum transport via an inward wave momentum
flux. Since these intensity gradient driven fluxes compete
with the electric field shear driven convective flux of wave
momentum to regulate the overall structure of ��r,�

w �, any
changes in the balance between the competitors may trigger
possible momentum transport bifurcations.

Given the rich structure of ��r,�
w �, one can identify at

least two scenarios for momentum transport bifurcations.
These are:

�i� A change in ��r,�
w � from an intensity diffusion domi-

nated state ��r,�
w �−Drad� �P�� /�r� to a �vE��-driven

convection dominated state ��r,�
w ��k	�vgr /�kr�

��vE���P�� /�T�.

�ii� A change in a convection dominated state of ��r,�
w �

due to a change in the product vph�vE��. This could
occur either via an electric field bifurcation or via a
change in vph, the turbulence phase velocity.

Type �i� qualitatively resembles an L→H transition, which
occurs at the edge and is associated with an increase in elec-
tric field shear so that Vw�N� increases while −Drad� �N� /�r
drops. In this scenario, �k�� is set by �vE��, as well, strength-
ening the dependence on �vE��. Type �i� bifurcations seem
consistent with the observed strong correlation between scal-
ing trends in intrinsic rotation and the L→H transition. Type
�ii� bifurcations qualitatively resemble internal momentum
transport bifurcations, such as those that occur with ITBs and
as that observed recently on the TCV tokamak.16 Such inter-
nal bifurcations can occur via an increase in local �vE�� in the
core, thus increasing both convective wave momentum flux
and symmetry breaking. This scenario is relevant to ITB-
formation, where changes in the momentum flux would be
accompanied by improvements in confinement. However, the
theory suggests that internal momentum transport bifurca-
tions can also occur via changes in vph, thereby reversing the
direction of wave momentum convection. This scenario is
especially relevant to the core plasma, where intensity gradi-
ents are weak, and to instances where the change in momen-
tum transport is not accompanied by a noticeable change in
confinement. This is the case in a recently reported, interest-
ing experiment on TCV, during which core rotation “flipped”
sign from counter to co-current direction, as the density was
increased in Ohmic plasmas �N.B. similar phenomena have
been observed on Alcator C-Mod64�. No significant change
in thermal transport was observed. We speculate that the ob-
served momentum transport bifurcation could be explained
as a change in vph from v*e direction to v*i direction, while
the ambient fluctuation population changes from predomi-
nantly electron drift waves to predominantly ITG modes, as
density increases while approaching the OH-saturation re-
gime. Indeed, excitation of ITG turbulence has long been
thought to explain the saturation of energy confinement in
high density Ohmic plasmas. Detailed, quantitative model-
ling of this fascinating momentum transport phenomenon us-
ing the theory presented here is ongoing, and will be dis-
cussed in a future publication. One interesting question
which is stimulated by the TCV results is that while the
experiment clearly exhibits hysteresis phenomena in density,
in that co-direction rotation persists when density is lowered
below OH-saturation levels, the theory suggests a smooth
evolution with v* as it changes from v*i to v*e. Put another
way, the theory seems to predict a second order transition
while the data suggests a first order transition. We speculate
that a possible resolution of this dilemma is “turbulence
spreading” or turbulent overshoot of the ITG population into
the electron drift wave population. Turbulence intensity
fronts are well known to exhibit “effective inertia,”65 thus
enabling them to continue to advance when local drive is
lowered. We suggest that the dynamics may be described by
two coupled nonlinear diffusion equations for the electron
and ion drift wave quanta density. In the past, such simple
nonlinear diffusion equations have had some success in mod-
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elling the nonlocal dynamics of turbulence spreading. Con-
structing a credible theoretical model of the two interacting
turbulence populations and then using that model to explain
the observed density hysteresis constitute very significant
challenges to our ongoing studies of TCV phenomenology.
Finally, we comment that a theoretical understanding of the
implications of reversed or weakly negative magnetic shear
for the�vE��-driven convective wave momentum flux would
be of great interest in elucidating intrinsic rotation in ITB
plasmas. This will be pursued in future works.

VI. CONCLUSIONS

In this paper, we have presented a general theory of par-
allel momentum transport by collisionless electrostatic drift
wave turbulence. The principal results of this paper are:

�i� The proof of a general momentum conservation theo-
rem, which relates total mean momentum evolution to
the resonant particle momentum flux, the wave mo-
mentum flux, and the refractive force exerted by flow
structures, has been derived. This theorem accounts
for, and resolves all ambiguities related to the interac-
tion between momentum transport by turbulence and
momentum transfer by wave-particle interaction. The
physics of the fluctuation-dependent momentum
source/sink which appears in the naive quasilinear
theory is clarified.

�ii� The calculation of the wave momentum flux valid for
stationary turbulence. The theoretical formulation
which we present yields a general expression for the
radial flux of parallel wave momentum, as given by
Eq. �40a�. The wave momentum flux contains both
radiative diffusive flux and a novel �vE��-driven con-
vective flux. The wave momentum flux contributes to
the total residual stress, i.e., that part of the momen-
tum flux not explicitly proportional to �v�� or
��v�� /�r. All the usual ambiguities associated with
calculating nonresonant parallel momentum transport
have been resolved.

�iii� The calculation of the resonant particle momentum
flux, as given by Eqs. �40c�–�40f�. The resonant mo-
mentum flux consists of a diffusive flux �with
����i but ����i�, a novel convective flux which
may be inward in certain regimes, and a novel re-
sidual stress piece, driven by �Ti and explicitly de-
pendent upon the symmetry breaking mechanism �i.e.,
the origin of �k���0, see �v� below�.

�iv� The calculation of the refractive force, which is
shown to depend sensitively on the structure of sec-
ondary parallel flows, such as those produced by
GAMs, and on radial electric field shear.

�v� A general expression for the evolution of �k��, which
allows evaluation and comparison of competing sym-
metry breaking mechanisms, as shown in Eq. �40b�.

�vi� The application of the theory to outline two possible
scenarios for momentum transport bifurcations. Both
of these involve a change in the momentum flux bal-
ance, and arise from evolution of the convective com-

ponent of the wave momentum flux, proportional to
vph�vE��. In one case, �vE�� rises, as in a conventional
electric field shear bifurcation, leading to overall im-
provement in confinement. In the other, vph changes
direction, due to a change in the propagation direction
of the underlying drift waves, but �vE�� and confine-
ment do not change. The second scenario may be rel-
evant to the phenomena recently observed in the core
of the TCV tokamak.

The theory presented here has several significant limitations.
First, the model is purely electrostatic, so field momentum
transport is not addressed. In the case of Alfvénic turbulence,
such as that driven by Alfvén eigenmodes, the field momen-
tum density can be expected to be comparable to the
nonresonant particle momentum density, thus complicating
the wave momentum budget, and possibly introducing an
Abraham force on the plasma.66 Second, we have not ad-
dressed the edge boundary condition on the rotation profile,
beyond entertaining the possibility of a possible influx of
wave momentum from the SOL. This boundary condition is
quite likely nontrivial, as SOL flows are significant, they can
exert a stress on the core plasma, and can modify wave
propagation and wave momentum in the SOL plasma.15

Third, the Krook model employed in Sec. III needs improve-
ment. This leads one to confront the interesting theoretical
question of how nonlinear interaction and transfer processes
driven by cascading or modulational instability respond to
perturbations, such as those induced by population gradients.
An improved model of “turbulent collisions” is required, and
an approach using a modified Leith model holds promise.67,68

Finally, the results in this paper indicate that the calculation
of wave momentum transport cannot really be separated
from the calculation of turbulence spreading and other non-
locality phenomena which influence turbulence envelope
evolution.69,70

While this paper is theoretical, it does offer several ideas
and results of potential interest to experimentalists. First it
presents a complete calculation and discussion of the struc-
ture and physics of the momentum flux �i.e., resonant par-
ticle + wave� and identifies �quantitatively� the residual
stress as a key contributor to momentum transport. The re-
sidual stress is ignored in traditional “D and V models,” and
requires dual perturbation experiments to elucidate it. Sec-
ond, we present an improved calculation of a resonant par-
ticle momentum pinch, which may be relevant to collision-
less core plasmas near ITG marginality. This pinch has
Vr /���1 /LT. Third, we identify two possible momentum
transport bifurcation scenarios. Well resolved, localized fluc-
tuation measurements could be used to test the momentum
transport bifurcation scenario based on a change in fluctua-
tion vph. Experiments which address intrinsic rotation evolu-
tion in ITB/plasmas with steepen �P would be of interest,
too. Fourth, we identify mean electric field shear and GAMs
as likely agents for transmitting the refractive force, and sug-
gest future studies of the relation between these quantities
and intrinsic rotation. Fifth, we offer a framework within
which to compare and contrast the strength and relevance of
competing turbulence symmetry breaking mechanisms.
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Future work will focus on extensions of the theory and
on applications to specific experiments.
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APPENDIX A: EXPLICIT DERIVATION OF WAVE
ACTION DENSITY

In this appendix we derive an explicit expression for the
wave action density from the gyrokinetic equation, and relate
it to momentum exchange between resonant particles and
waves. The induced plasma response to an external electro-
static perturbation may be written as

�Fk,�
ind =

J0�k����
� − �EB − k�v� + i�

� c

B
�b̂ � k� ·

��Fs�
�x

−
qs

ms
k�

��Fs�
�v�

��k,�
tot � Lk,���k,�

tot , �A1�

where ��tot=��ind+��ext. Considering the gyrokinetic
Poisson equation, an equation for the induced response may
be written as

k�
2 ��k,�

ind = 4�
s

qs� d3v̄�J0����Fk,�
ind

+ �J0
2��� − 1�

qs��k,�
ind

Ts
�Fs� , �A2�

where it is understood that �Fk,�
ind is species dependent. Equa-

tion �A2� may be simplified via the following notation:

���k�k�
2 ��k,�

ind = 4�
s

qs� d3v�J0����Fk,�
ind , �A3�

where ���k��1+�s�kDs
2 /k�

2 ��1− I0�bs�exp�−bs��. This per-
mittivity may be profitably understood to correspond to a
“gyrokinetic vacuum.”71

After substitution of Eq. �A1� into Eq. �A3�, the induced
response of the electrostatic field can be written in terms of
the external perturbations, yielding

�1 + �k,�����k�k�
2 ��k,�

ind

= 4�
s

qs� d3v�J0���Lk,���k,�
ext . �A4�

Defining the susceptibility by

�k,� = − 4�
s

qs

���k�k�
2 � d3v̄

J0
2���

� − �EB − k�v� + i�

�� c

B
�b̂ � k� · ��Fs� −

qs

ms
k�

��Fs�
�v�

� , �A5�

and the dispersion relationship is defined as

0 = Dk,� � 1 + �k,�. �A6�

The growth rate may be approximated as

�k = �− Im Dk,�

�Dk,�/��
�

�=�k

. �A7�

Finally, the rate at which momentum is exchanged between
waves and resonant particles is given by the RHS of Eq.
�37a�, and may be rewritten in terms of the susceptibility as

SR =
1

4
� dkk� Im �k,�k

���k�k�
2 ���k�2, �A8�

utilizing Eqs. �A7� and �A6�, this may be simplified, yielding

SR = − 2� dkk��kNk, �A9�

where Nk is the wave action density, and is defined as

Nk �
1

8
� �Dk,�

��
�

�=�k

���k�k�
2 ���k�2. �A10�

APPENDIX B: PHYSICS OF THE REFRACTIVE
FORCE

This appendix presents a brief discussion of the basic
physics of the refractive force. A pedagogical tactic em-
ployed here is to illustrate aspects of the refractive force in
the context of concepts and results familiar from the theory
of zonal flow generation.

Put most generally, the refractive force is simply the rate
of change of wave momentum density induced by wave
packet refraction. Since the evolution of wave momentum
density is described by the k-moment of the wave kinetic
equation, we have

�

�t
Pw + � · �w

J = frefr + �dPw

dt
�

diss
, �B1�

where

�w
J =� dkk�V + vg�N �B2a�

is the total wave momentum density flux,
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�dPw

dt
�

diss
=� dkkC�N� =� dkk�Cw−w�N� + Cw−p�N��

�B2b�

is the total wave momentum dissipated by quasiparticle in-
teractions �N.B. in practice, such momentum dissipation al-
most always occurs via linear and nonlinear wave-particle
momentum transfer�, and

frefr =� dk�−
�

�x
�� + k · V�N� �B2c�

is the refractive force. As noted in the text for fluctuating
strain fields, the wave population density may be further de-
composed into a mean and fluctuating piece �i.e., N= �N�
+ Ñ�, so the mean field refractive force may be written as

�frefr� = −� dk�� �

�x
�� + k · V���N� + Dk

I ·
��N�
�k

 ,

�B3a�

where

Dk
I = �

q
qq���̃ + k · Ṽ�q�2R�
 − q · vgr� �B3b�

is the k-space diffusion tensor for stochastic refraction.
The interpretation of �frefr� as a force density follows

from the definition �Pw /�t= �f refr�+¯ and the fact that
dPNR /dt=dPW /dt. Moreover, �f refr� is a local source/sink of
momentum, and not a divergence of a flux. The physics of
the refractive force is simple—refraction tilts wave packet
trajectories, thus changing their momentum. For example,
the familiar case of a mean shear flow �vy�x��, the refractive
force is just

�frefr� = �f ref�x̂ = −
�vy

�x
� dkky�N� . �B4a�

This corresponds to the familiar cartoon explanation of
“zonal flow formation,” where “tilting” of wave packets and
eddies by coherent shear flows, which diverts x̂-direction
momentum into ŷ-direction momentum and so applies a
force �or stress� on the wave packet, leading to shear flow
amplification. Similarly for stochastic �i.e., diffusive� refrac-
tion by a spectrum of zonal flows �with q=qx̂ only�,

�frefr� = �f refr�x̂ = −� dkDkx,kx

��N�
�kx

�B4b�

so the refractive force is just the integrated flux in k pro-

duced by random shearing. Here Dkx,kx
= x̂ ·Dk
I · x̂. Proceeding

heuristically, we can immediately note that the power ex-
pended by the wave packet against the refractive force is just

P = f · V �� dkvgrfr = −� dkvgrDkx,kx

��N�
�kx

. �B5�

This result may be recovered systematically from wave-
kinetics by taking the energy moment of the wave kinetic
equation,72 i.e.,

���

�t
= −� dk�k

�

�k
· �dk

dt
N� =� dkvg ·

dk

dt
N

so for stochastic zonal flow shears

���

�t
= −� dkvgrDkx,kx

��N�
�kx

in agreement with the heuristic argument. Note that here,
N is the wave action density. Interestingly, using N=

along with the appropriate corresponding relation ��=N / �1
+k�

2 �s
2� yields an identical result for P, which is the macro-

scopic observable �i.e., power expended by waves�. Since the
total energy of waves and zonal flows is conserved up to
dissipation, i.e., d��Wave+�ZF� /dt=0,43 this establishes that
the refractive force of random shearing is in fact precisely
what does the work to drive zonal flows against collisional
dissipation, and that the refractive force may be viewed as
the effective body force which drives the zonal flow, thus
connecting the refractive force to familiar concepts. Note
that a parallel wave group velocity is required to energize a
parallel mean flow via the parallel refractive force, just as a
radial group velocity is required to energize zonal flows via
the radial refractive �i.e., “eddy tilting”� force.

Finally, we comment that since the refractive force en-
ters the balance of wave quanta density N, wave quanta mo-
mentum density Pw=kN, and wave quanta energy density
�w=�N it necessarily must play a role in the dynamics of
spreading or propagation of wave intensity I��dkN, wave
momentum density Pw=�dkkN, and wave energy density
�w=�dk�N. It is not clear, however, that the transport of all
moments of N will be affected equally. Clearly, the “radia-
tion hydrodynamics” of turbulence spreading and nonlocality
phenomena is a promising and interesting topic for future
research.

1S. D. Scott, P. H. Diamond, R. J. Fonck, R. J. Goldston, R. B. Howell, K.
P. Jaehnig, G. Schilling, E. J. Synakowski, M. C. Zarnstorff, C. E. Bush, E.
Fredrickson, K. W. Hill, A. C. Janos, D. K. Mansfield, D. K. Owens, H.
Park, G. Pautasso, A. T. Ramsey, J. Schivell, G. D. Tait, W. M. Tang, and
G. Taylor, Phys. Rev. Lett. 64, 531 �1990�.

2H. Biglari, P. H. Diamond, and P. W. Terry, Phys. Fluids B 2, 1 �1990�.
3R. J. Groebner, K. H. Burrell, and R. P. Seraydarian, Phys. Rev. Lett. 64,
3015 �1990�.

4K. H. Burrell, Phys. Plasmas 4, 1499 �1997�.
5P. H. Diamond and Y. B. Kim, Phys. Fluids B 3, 1626 �1991�.
6K. H. Burrell, E. J. Doyle, P. Gohil, R. J. Groebner, J. Kim, R. J. La Haye,
L. L. Lao, R. A. Moyer, T. H. Osborne, W. A. Peebles, C. L. Rettig, T. H.
Rhodes, and D. M. Thomas, Phys. Plasmas 1, 1536 �1994�.

7K. Ida, T. Minami, Y. Yoshimura, A. Fujisawa, C. Suzuki, S. Okamura, S.
Nishimura, M. Isobe, H. Iguchi, K. Itoh, S. Kado, Y. Liang, I. Nomura, M.
Osakabe, C. Takahashi, K. Tanaka, and K. Matsuoka, Phys. Rev. Lett. 86,
3040 �2001�.

8B. Gonçalves, C. Hidalgo, M. A. Pedrosa, R. O. Orozco, E. Sanchez, and
C. Silva, Phys. Rev. Lett. 96, 145001 �2006�.

9J. E. Rice, M. Greenwald, I. H. Hutchinson, E. S. Marmar, Y. Takase, S.
M. Wolfe, and F. Bombarda, Nucl. Fusion 38, 75 �1998�.

10J. E. Rice, A. Ince-Cushman, J. S. deGrassie, L.-G. Eriksson, Y. Saka-
moto, A. Scarabosio, A. Bortolon, K. H. Burrell, C. Fenzi-Bonizec, M. J.
Greenwald, R. J. Groebner, G. T. Hoang, Y. Koide, E. S. Marmar, A.
Pochelon, and Y. Podpaly, 21th IAEA Fusion Energy Conference,
Chengdu, China �International Atomic Energy Agency, Vienna, 2006�, pp.
EX/p3–12.

11J. S. deGrassie, J. E. Rice, K. H. Burrell, R. J. Groebner, and W. M.
Solomon, Phys. Plasmas 14, 056115 �2007�.

12M. Yoshida, Y. Koide, H. Takenaga, H. Urano, N. Oyama, K. Kamiya, Y.

012303-20 Diamond et al. Phys. Plasmas 15, 012303 �2008�

Downloaded 13 Apr 2008 to 132.239.66.164. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



Sakamoto, and Y. Kamada, Plasma Phys. Controlled Fusion 48, 1673
�2006�.

13W. M. Solomon, K. H. Burrell, J. S. deGrassie, R. Budny, R. J. Groebner,
J. E. Kinsey, G. J. Kramer, M. A. Makowski, D. Mikkelsen, R. Nazikian,
C. C. Petty, P. A. Politzer, S. D. Scott, M. A. Van Zeeland, and M. C.
Zarnstorff, “Momentum confinement at low torque,” Plasma Phys. Con-
trolled Fusion �in press�.

14J. E. Rice, E. S. Marmar, P. T. Bonoli, R. S. Granetz, M. J. Greenwald, A.
E. Hubbard, J. W. Hughes, I. H. Hutchinson, J. H. Irby, B. Labombard, W.
D. Lee, Y. Lin, D. Mossessian, J. A. Snipes, S. M. Wolfe, and S. J.
Wukitch, Fusion Sci. Technol. 51, 288 �2007�.

15B. LaBombard, J. E. Rice, A. E. Hubbard, J. W. Hughes, M. Greenwald, J.
Irby, Y. Lin, B. Lipschultz, E. S. Marmar, C. S. Pitcher, N. Smick, S. M.
Wolfe, and S. J. Wukitch, Nucl. Fusion 44, 1047 �2004�.

16A. Bortolon, B. P. Duval, A. Pochelon, and A. Scarabosio, Phys. Rev. Lett.
97, 235003 �2006�.

17M. Yoshida, Y. Koide, H. Takenaga, H. Urago, N. Oyama, K. Kamiya, Y.
Sakamoto, Y. Kamada, and the JT-60 Team, in Proceedings of the 21th
IAEA Fusion Energy Conference, Chengdu, China �International Atomic
Energy Agency, Vienna, 2006�, pp. IAEA/EX–P3–22.

18P. Monier-Garbet, P. Andrew, P. Belo, G. Bonheure, Y. Corre, K. Crombe,
P. Dumortier, T. Eich, R. Felton, J. Harling, J. Hogan, A. Huber, S. Jaclu-
nich, E. Joffrin, H. R. Koslowski, A. Kreter, G. Maddison, G. F. Mat-
thews, A. Messiaen, M. F. Nave, J. Ongena, V. Parail, M. E. Puiatti, J.
Rapp, R. Sartori, J. Stober, M. Z. Tokar, B. Unterberg, M. Valisa, I. Voit-
sekhovitch, and M. von Hellerman, Phys. Rev. Lett. 95, 155003 �2005�.

19S. I. Itoh, Phys. Fluids B 4, 796 �1992�.
20N. Mattor and P. H. Diamond, Phys. Fluids 31, 1180 �1988�.
21K. C. Shaing, Phys. Plasmas 8, 193 �2001�.
22A. G. Peeters, C. Angioni, and D. Strintzi, Phys. Rev. Lett. 98, 265003

�2007�.
23T. S. Hahm, P. H. Diamond, O. D. Gurcan, and G. Rewoldt, Phys. Plasmas

14, 072302 �2007�.
24Ö. D. Gürcan, P. H. Diamond, and T. S. Hahm, “Turbulent equipartition

and homogenization of angular momentum,” Phys. Rev. Lett. �submitted�.
25Ö. D. Gürcan, P. H. Diamond, T. S. Hahm, and R. Singh, Phys. Plasmas

14, 042306 �2007�.
26Y. B. Kim, P. H. Diamond, H. Biglari, and P. W. Terry, Phys. Fluids B 2,

2143 �1990�.
27R. R. Dominguez and G. M. Staebler, Phys. Fluids B 5, 3876 �1993�.
28P. H. Diamond, V. B. Lebedev, Y. M. Liang, A. V. Gruzinov, I. Gruzinova,

and M. Medvedev, in Proceedings of the 15th IAEA Fusion Energy Con-
ference, Seville, Spain �International Atomic Energy Agency, Vienna,
1994�, pp. IAEA–CN–60/D–2–II–6.

29X. Garbet, Y. Sarazin, P. Ghendrih, S. Benkadda, P. Beyer, C. Figarella,
and I. Voitsekhovitch, Phys. Plasmas 9, 3893 �2002�.

30J. R. Myra, J. Boedo, B. Coppi, D. A. D’Ippolito, S. I. Krasheninnikov, B.
P. LeBlanc, M. Lontano, R. Maqueda, D. A. Russell, D. P. Stotler, M. C.
Varishetti, S. J. Zweben, and the NSTX Team, in Proceedings of the 21th
IAEA Fusion Energy Conference, Chengdu, China �International Atomic
Energy Agency, Vienna, 2006�, pp. IAEA/TH–P6–21.

31L. Chen, J. Geophys. Res. 104, 2421, DOI: 10.1029/1998JA900051
�1999�.

32R. Z. Sagdeev and A. A. Galeev, Nonlinear Plasma Theory �Benjamin,
New York, 1969�.

33D. Mihalas and B. Weibel-Mihalas, Foundations of Radiation Hydrody-
namics �Oxford University Press, Oxford, 1984�.

34X. Garbet, L. Laurent, A. Samain, and J. Chinardet, Nucl. Fusion 34, 963
�1994�.

35Z. Lin and T. S. Hahm, Phys. Plasmas 11, 1099 �2004�.
36T. S. Hahm, P. H. Diamond, Z. Lin, K. Itoh, and S. I. Itoh, Plasma Phys.

Controlled Fusion 46, A323 �2004�.
37Ö. D. Gürcan, P. H. Diamond, and T. S. Hahm, Phys. Rev. Lett. 97,

024502 �2006�.
38M. N. Rosenbluth and C. S. Liu, Phys. Fluids 19, 815 �1976�.
39P. H. Diamond and T. S. Hahm, Phys. Plasmas 2, 3640 �1995�.
40B. A. Carreras, D. Newman, V. E. Lynch, and P. H. Diamond, Phys.

Plasmas 3, 2903 �1996�.
41P. H. Diamond and Y.-B. Kim, Phys. Fluids B 3, 1626 �1991�.
42H. L. Berk and K. Molvig, Phys. Fluids 26, 1385 �1983�.
43P. H. Diamond, S. I. Itoh, K. Itoh, and T. S. Hahm, Plasma Phys. Con-

trolled Fusion 47, R35 �2005�.
44P. H. Diamond, M. N. Rosenbluth, F. L. Hinton, M. Malkov, J. Fleischer,

and A. Smolyakov, in Proceedings of the 17th IAEA Fusion Energy Con-
ference, Yokohama, Japan �International Atomic Energy Agency, Vienna,
1998�, pp. IAEA–CN–69/TH3/1.

45F. P. Bretherton, J. Fluid Mech. 36, 785 �1969�.
46S. V. Nazarenko, N. J. Zabusky, and T. Scheidegger, Phys. Fluids 7, 2407

�1995�.
47O. Buhler and M. E. McIntyre, J. Fluid Mech. 492, 207 �2003�.
48G. B. Whitham, Linear and Nonlinear Waves �Wiley-Interscience, New

York, 1974�.
49A. M. Balk, S. V. Nazarenko, and V. E. Zakharov, Phys. Lett. A 146, 217

�1990�.
50A. I. Smolyakov and P. H. Diamond, Phys. Plasmas 6, 4410 �1999�.
51B. Dubrulle and S. Nazarenko, Physica D 110, 123 �1997�.
52J. R. Pierce, Travelling Wave Tubes �Van Nostrand, New York, 1950�.
53C. H. McComas and F. P. Bretherton, J. Geophys. Res. 82, 1367 �1977�.
54V. E. Zakharov, V. S. Lvov, and G. Falkovich, Kolmogorov Spectra of

Turbulence I: Wave Turbulence �Springer-Verlag, Berlin, 1992�.
55W. M. Manheimer and T. H. Dupree, Phys. Fluids 11, 2709 �1968�.
56E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics �Butterworth-

Heinemann, London, 1981�.
57C. P. Ritz, H. Lin, T. L. Rhodes, and A. J. Wootton, Phys. Rev. Lett. 65,

2543 �1990�.
58B. B. Kadomtsev, Plasma Phys. Controlled Fusion 34, 1931 �1992�.
59E. A. Spiegel, Astrophys. J. 138, 216 �1963�.
60M. S. Longuet-Higgins and R. W. Stewart, Deep-Sea Res. 11, 529 �1964�.
61N. Mattor and P. H. Diamond, Phys. Rev. Lett. 72, 486 �1994�.
62J. Q. Dong, W. H. R. D. Bengtson, and G. X. Li, Phys. Plasmas 1, 3250

�1994�.
63B. Coppi, Nucl. Fusion 42, 1 �2002�.
64J. E. Rice �private communication, 2006�.
65J. D. Murray, Mathematical Biology, 2nd ed. �Springer-Verlag, Berlin,

1993�.
66L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of

Continuous Media �Pergamon, Oxford, 1981�.
67C. E. Leith, Phys. Fluids 11, 671 �1968�.
68C. Connaughton and S. Nazarenko, Phys. Rev. Lett. 92, 044501 �2004�.
69X. Garbet, Y. Sarazin, F. Imbeaux, P. Ghendrih, C. Bourdelle, O. D. Gur-

can, and P. H. Diamond, Phys. Plasmas 14, 122305 �2007�.
70V. Naulin, A. H. Nielsen, and J. J. Rasmussen, Phys. Plasmas 12, 122306

�2005�.
71J. Krommes, Phys. Fluids B 5, 1066 �1993�.
72P. H. Diamond, M. N. Rosenbluth, E. Sanchez, C. Hidalgo, B. van Milli-

gen, T. Estrada, B. Branas, M. Hirsch, H. J. Hartfuss, and B. A. Carreras,
Phys. Rev. Lett. 84, 4842 �2000�.

012303-21 Transport of parallel momentum… Phys. Plasmas 15, 012303 �2008�

Downloaded 13 Apr 2008 to 132.239.66.164. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp


