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1. INTRODUCTION

The goal of this survey is to review recent developments in the hydro-
dynamic stability theory of spatially developing flows pertaining to
absolute/convective and local/global instability concepts. We wish to dem-
onstrate how these notions can be used effectively to obtain a qualitative
and quantitative description of the spatio-temporal dynamics of open shear
flows, such as mixing layers, jets, wakes, boundary layers, plane Poiseuille
flow, etc.

In this review, we only consider openflows where fluid particles do not
remain within the physical domain of interest but are advected through
downstream flow boundaries. Thus, for the most part, flows in "boxes"
(Rayleigh-B6nard convection in finite-size cells, Taylor-Couette flow
between concentric rotating cylinders, etc.) are not discussed. Further-
more, the implications of local/global and absolute/convective instability
concepts for geophysical flows are only alluded to briefly.

In many of the flows of interest here, the mean-velocity profile is non-
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474 HUERRE & MONKEWITZ

uniform in the streamwise direction, and in order to distinguish between
local and global instability properties, it is first essential to assume that
streamwise variations of the mean flow are slow over a typical instability
wavelength. The terms "local" and "global" then refer to the instability
of the local velocity profile and of the entire flow field, respectively. At the
local level of description, it is further necessary to characterize the impulse
response of the system within the parallel-flow approximation at each
streamwise station. If localized disturbances spread upstream and down-
stream and contaminate the entire parallel flow, the velocity profile is said
to be locally absolutely unstable. If, by contrast, disturbances are swept
away froln the source, the velocity profile is said to be locally convectively
unstable. One of the main objectives of recent theoretical efforts has
thus been to establish a relationship between local and global instability
properties. In particular, does the existence of a region of local absolute
instability imply that the entire flow can sustain temporally growing global
modes?

It is appropriate at this point to briefly recall the classical hydrodynamic-
instability description of open flows. Since several spatially developing
shear flows are known to be extremely sensitive to e_xternal noise, many
controlled experiments have been conducted to determine their response
to different excitation frequencies. As a result, it has been customary to
represent the downstream development of vortical structures as a col-
lection of spatially growing instability waves of various frequencies [see
Ho & Huerre (1984) for a review of such analyses applied to mixing layers].
In other words, experimental observations have, in general, been compared
with the results of local spatial stability calculations (with given real fre-
quency and unknown complex wave number) performed on the measured
time-averaged mean velocity profile at each streamwise station. Such an
approach has been reasonably successful in describing the evolution of
vortices in forced experiments. For examples of this type of analysis, the
reader is referred to Crighton & Gaster (1976) and Gaster et al. (1985),
among many other similar studies. A large part of the hydrodynamic-
stability literature, however, has been devoted to temporal theory (with
given real wave number and unknown complex frequency), where it is
implicitly assumed that the flow develops from some given initial state.
The following question may then be asked: What is the fundamental reason
for adopting a spatial theory point of view in many open shear flows? It
is argued here that the notions of local absolute/convective instability
provide a rigorous justification for selecting spatial theory in specific open
flows (homogeneous mixing layers, flat-plate wakes, uniform-density jets).
More interestingly, application of these concepts to other open flows (bluff-
body wakes, heated jets) leads to the conclusion that local spatial theory
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LOCAL AND GLOBAL INSTABILITIES 475

in the strict sense (real frequency) is not appropriate. Wave number and
frequency both need to be considered complex, and a global temporal
instability may arise whereby the entire nonparallel mean flow admits self-
sustained global modes with well-defined complex frequencies.

Local/global and absolute/convective instability concepts provide the
necessary theoretical framework to classify different open shear flows
according to the qualitative nature of their dynamical behavior. For
instance, shear flows that are locally convectively unstable everywhere
(mixing layers, fiat-plate wakes) essentially display extrinsic dynamics. The
spatial evolution of the unsteady flow is in large part determined by the
character (amplitude, frequency content, etc.) of the excitation that can 
tailored to meet specific control goals. Such flows are noise amplifiers. By
contrast, shear flows with a pocket of absolute instability of sufficiently
large size (bluff-body wakes, hot or low-density jets) may display intrinsic
dynamics of the same nature as in closed-flow systems. Fluid particles are
still advected downstream, but temporally growing global modes may be
present. These flows behave as oscillators: The evolution of vortices does
not rely on the spatial amplification of external perturbations but rather
on the growth of initial disturbances in time. Furthermore, the distribu-
tion of global modes is synchronized in the streamwise direction. This
class of open flows is particularly well suited to a nonlinear dynamical-
systems approach of the kind that has been implemented in closed systems.
The onset of deterministic chaos, if it exists, is likely to be well defined in
these systems: One expects a well-ordered sequence of bifurcations leading
from a limit cycle (the global mode) to a low-dimensional strange attractor.
The sensitivity of convcctively unstable flows to external noise, on the
other hand, makes it much more difficult to discriminate between low-
dimensional chaos arising from the flow dynamics and spatially amplified
random noise. Finally, there exists a third class of marginally globally
stable flows (homogeneous jets) where the local velocity profiles are, strictly
speaking, locally convectively unstable in the entire field but absolute
instability is incipient at some streamwise station. In such situations, global
modes are often weakly damped in time, and they can be preferentially
destabilized by applying external forcing in the vicinity of the global-mode
frequency.

The distinction between absolute and convective instabilities appears to
have first been brought out in a general context by Twiss (1951a,b, 1952)
and Landau & Lifshitz (1954, 1959). It should be emphasized that plasma
physicists have made extensive and seminal contributions to the theoretical
foundations underlying these notions, and that they have applied them to
the study of numerous plasma instabilities. For systematic developments
of the main ideas, the reader is referred to the work of Sturrock (1958,
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476 HUERRE & MONKEWITZ

1961), Briggs (1964), Akhiezer & Polovin (1971), Bers (1975, 1983), 
Lifshitz & Pitaevskii (1981). The complete and lucid review of Bers (1983) 
particularly recommended for an up-to-date account of recent theoretical
efforts in the description of spatio-temporal plasma instabilities. The topic
of absolute/convective instabilities has found its way into the mainstream
of the plasma-physics literature: Presentations of the main ideas have
appeared in the books by Clemmow & Dougherty (1969), Mikhailovskii
(1974), and Cap (1976), among others.

The impact of such concepts on the study of fluid-mechanical insta-
bilities appears to be of much more recent origin. A spatio-temporal
description of Tollmien-Schlichting wave packets in boundary layers was
developed early on by Gaster 0968, 1975), and a general formal method-
ology was proposed without explicitly introducing a definite distinction
between the absolute or convective nature of the instability mechanism.
The technique advocated by Briggs (1964) has been repeatedly imple-
mented by Tam (1971, 1978, 1981) to analyze the receptivity of com-
pressible shear flows to acoustic forcing. In geophysical fluid dynamics,
Thacker (1976) and Merkine 0977) have determined the transition from
absolute to convective instability in a two-layer model of the baroclinic
instability. But, it is mostly in the last five years that these issues have
come to the foreground in the description of hydrodynamic instabilities in
spatially evolving shear flows. We wish to report here on these recent
advances. Only a few survey articles have appeared that treat the subject
from a fluid-mechanical point of view. One should mention, however,
the reviews by Bechert (1985), Huerre (1987), and Monkewitz (1989b).
Morkovin (1988) has recently proposed an appealing interpretation 
roads to turbulence in open shear flows that primarily hinges on possible
receptivity mechanisms and on the absolute/convective nature of insta-
bilities in various shear flows.

The present review is organized in the following manner. Sections 2 and
3 are devoted to a formal presentation of local and global instability issues
without being too specific about the particular flow under consideration.
Absolute and convective instabilities are precisely defined for strictly par-
allel flows in Section 2, together with the mathematical criterion deter-
mining the nature of the instability. In Section 3 we define global instability
and relate the local instability properties to the presence or absence of self-
sustained global modes in spatially developing flows. In Sections 4, 5, and
6 we discuss how these general ideas have enhanced our qualitative and
quantitative understanding of the dynamical behavior of specific shear
flows. The approach in these three sections is far more descriptive. In
Section 4 globally stable flows are discussed, whereas Sections 5 and 6
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LOCAL AND GLOBAL INSTABILITIES 477

pertain to marginally globally stable flows and globally unstable flows,
respectively. Instead of being exhaustive, we have chosen in the text to
discuss only a few illustrative examples in each section. However, for the
sake of comprehensiveness, the scope and results of relevant studies have
been summarized (see Appendix) in a series of four tables pertaining 
wall-bounded shear flows, single mixing layers, wakes, and jets, respec-
tively. The final section is devoted to a number of related issues: experi-
mental diagnostics, implications for flow control, chaotic dynamics in open
flows, and finally pattern propagation fronts.

2. LOCAL INSTABILITY CONCEPTS:

PARALLEL FLOWS

The classical linear stability theory of parallel shear flows is concerned
with the development in space and time of infinitesimal perturbations
around a given basic flow U(y; R). In the sequel, x, y, and t denote the
streamwise direction, cross-stream direction, and time, respectively, and
U(y; R) is the sole component of the basic flow in the x-direction. The
basic state is parallel, i.e. it is assumed to be independent ofx but may vary
with a control parameter R, such as the Reynolds number. Fluctuations are
typically decomposed into elementary instability waves ~b (y; k) exp i( kx - ~ot)}
of complex wave number k and complex frequency in. The cross-stream
distribution ~b(y; k) is then shown in most cases to satisfy an ordinary
differential equation of the Orr-Sommerfeld type. Enforcement of appro-
priate boundary conditions at, say, Yl and Y2 then leads to an eigenvalue
problem whereby eigenfunctions ~b(y;k) exist only if k and ~o are con-
strained to satisfy a dispersion relation of the form

D[k, ¢o; R] = 0. (1)

For simple basic flows, this relation can be calculated explicitly. For more
realistic velocity profiles, it is obtained by numerical integration of the
Orr-Sommerfeld equation. Temporal modes c0(k; R) refer to cases where
the complex frequency ~o is determined as a function of real wave number
k. Conversely, spatial branches k(co; R) are obtained by solving for complex
wave numbers k when o) is given real. In this section we deliberately ignore
variations in the cross-stream direction y and only consider the spatio-
temporal evolution of instability waves in the (x, t)-plane. This projection
greatly simplifies the presentation of the fundamental concepts without los-
ing any of the essential characteristics of the instability. Thus, one may asso-
ciate a differential or integro-differential operator D[--i(O/Ox), i(c~/c~t); R] 
physical space (x, t) to the dispersion relation (1) in spectral space (k,
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478 HUERRE & MONKEWITZ

such that fluctuations O(x, t) satisfy

I-i~--~,i~t;Rlo ~,(x, t) = (2)

The mathematical framework to be outlined next has proven to be
extremely valuable in the study of plasma instabilities. For detailed dis-
cussions within this context, the reader is referred to Sturrock (1961),
Briggs (1964), Bets (1975, 1983) and Lifshitz & Pitaevskii (1981). 
us (Huerre 1987) has recently reviewed this subject from the point of view
of fluid-dynamical instabilities.

Following these earlier analyses, one introduces the Green’s function,
i.e. the impulse response G(x, t) of the flow defined by

D -i~x x,i~t;R G(x,t) = 6(x)f(t), (3)

with 0 denoting the Dirac delta function.
The basic flow is then said to be linearly stable if

~i~ G(x, t) = 0 along all rays x/t = constant, (4)

and it is linearlyunstable:if"

!i~. G(x, t) = ~ along at least one ray.x/t = constant. (5)

Among linearly unstable flows, one must further distinguish between
two types of impulse response: The basic flow is referred to as convectively
unstable if

~i~m~ G(x, t) = 0 along the ray x/t = 0, (6)

and it is absolutely unstable if

!i~m~ G(x, t) = ~ along the ray x/t = 0. (7)

The above definitions can be illustrated on the linearized Ginzburg-
Landau model. The operator D then takes the form

D --i , i~t; R ~O(x, t) =- ~ +~Ok~xx -- ~09kk~x2 +icoR(R--Rc)~ = 

(8)
where co~ is a real positive constant group velocity, and ~Okk and ~oR are
complex constan, ts with O~kk,i < 0. When an appropriate cubic nonlinearity
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LOCAL AND GLOBAL INSTABILITIES 479

is added, this simple model is known to arise in many marginal-stability
analyses of fluid-dynamical systems close to onset (Newell & Whitehead
1969, Stewartson & Stuart 1971). In such a context, the field ¢(x, t) 
interpreted as a complex amplitude function characterizing the spafio-
temporal modulations of the marginal wave ~b(x, t)e i(kcx-~oo’) at R = Re. The
Ginzburg-Landau equation has been extensively studied by Deissler (1985,
1987a,c, 1989) to identify possible transition mechanisms in open-flow
systems (see Section 7). Throughout the present review, we use Equation
(8) and its spectral counterpart as a simple example of instability-wave
evolution. It is argued in the next section that the spatio-temporal dynamics
of global modes is indeed governed, in the WKB approximation, by such
an amplitude equation, but with varying coefficients.

Examples of possible linear impulse responses arising from Equation
(8) are displayed in Figure 1 for different ranges of the control parameter
R (see also Chomaz et al. 1987). Disturbances. grow exponentially along
all rays contained within the indicated wedges. The flow is stable in Figures
la,d,f, convectively unstable in Figures lb, g, and absolutely unstable in

R <Rc
0 x

Rc <R <Rt

~
(c) ~~~_~

0 x 0 x
R >Rt

R <Rc

i
t (e)

~
0 x 0 x

R>Rc=Rt

0 x 0 x 0 x
R <Rc Rc <R <Rt R >Rt

Figure 1 Sketches of typical impulse responses. Single traveling wave: (a) stable, (b)
convectively unstable, (c) absolutely unstable. Stationary mode: (d) stable, (e) absolutely

unstable. Counterpropagating traveling waves: (f) stable, (9) convectively unstable, 

absolutely unstable.
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480 HUERRE & MONKEWITZ

Figures le,e,h. Typically, convectively unstable flows give rise to wave
packets that move away from the source and ultimately leave the medium
in its undisturbed state. Absolutely unstable flows, by contrast, are gradu-
ally contaminated everywhere by a point-source input.

Three scenarios, among others, can be envisioned as the control pa-
rameter R is varied. These can be visualized by following the sketches of
Figure 1 along three horizontal levels. In the general case, where no
particular spatial symmetries prevail, the critical value Rc marks the tran-
sition from a stable flow (Figure 1 a) to a convectively unstable flow (Figure
lb). When cubic nonlinear terms are included, the system undergoes, at
this same value Re, a Hopf bifurcation to a limit cycle in the form of a
spatially periodic traveling wave. There may also exist a second transition

¯ point Rt > R~ beyond which the flow becomes absolutely unstable (Figure
1 c). By contrast, in physical situations such as Rayleigh-B6nard convection
or Taylor-Couette flow, an additional reflection symmetry x-~-x is
present and/L necessarily coincides with Rt (Figures ld, e). In Equation
(8), ~ok is equal to zero, and ~Okk, ~0R are in this case purely imaginary. The
flow then undergoes at Rc a stationary bifurcation to a steady state. In
contrast with the general case, such flows are absolutely unstable immedi-
ately beyond the onset of instability. Finally, we note the scenario one may
expect when there is a Hopf bifurcation to an oscillatory spatially periodic
state in systems endowed with reflection symmetry x ~ -x. Such a situ-
ation has recently been studied to describe oscillating convection in binary
fluids (Coullet et al. 1985, Cross 1986, 1988, Dcissler & Brand 1988). The
instability can then be decomposed into left- and right-moving waves of
respective complex amplitudes q~L and ~OR; each family of waves is governed
by a Ginzburg-Landau equation of the form (8) with opposite signs 
the group velocity cok. Above the bifurcation point R~, the instability is
necessarily convective (Figure lg) but there may be a critical value Rt > Rc

beyond which both wave packets merge to give rise to absolute instability
(Figure lh).

General mathematical criteria based on the properties of the dispersion
relation D in the complex k- and ~o-planes have been derived to determine
the nature of the instability. Equation (3) can immediately be solved 
(k, ~o)-space. The Green’s function is therefore expressed as the double
Fourier integral

G(x, t) = (~x)2 D[k, ~o; R] d~o (9)

The contour L in the complex frequency plane is a straight horizontal line
located above all the singularities of the integrand so as to satisfy causality,
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LOCAL AND GLOBAL INSTABILITIES 481

~oi
~ t < OL ¯

~ ~t>O
(a)

ki

~~’~’~x>O

F" [~ " jkr

~ x<O

09r

(b)

ki

~+(~o)

kl

kr

Figure 2 Loci of spatial branches k+(o~) and k-(o~) as L-contour is displaced downward
in the complex ~o-plane. (a), (b), and (c) refer to different stages of the pinching process.

namely G(x, t) = 0 for all x when t < 0. The path F in the complex wave-
number plane is initially taken along the real axis. A sketch of the paths
of integration is shown in Figure 2a. If one assumes for simplicity that
Equation (1) admits a single discrete temporal mode c0(k), then the Green’s
function G(x, t) is formally obtained from a residue calculation in the co-
plane at 09 = og(k). One finds that

i ~+~ ei[kx-~°(k)t]
G(x, t) = - ~H(t) J_~ dk, (10)

~ [k, co(k); 

where H(t) is the Heaviside unit-step function. This Fourier integral over
all wave numbers k can be evaluated for large time t (x/t fixed) by applying
the method of steepest descent. Details of the calculation very much depend
on the particular form of co(k). It is assumed here that the mode og(k) gives
rise to a single stationary point k, for the phase in the integrand such that

~-~ (k,) = 7" (11)
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482 HUERRE & MONKEWITZ

If the original contour of integration along the real k-axis can be deformed
into a steepest descent path issuing from the saddle point k., G(x, t) can
bc evaluated asymptotically for large time. Following standard arguments,
one obtains

ei[k.x- ~o(k.)t]
G(x, t) -- (270 1/ 2ei~/4 (12)

0D [-d2e) ]1/2"[k,, (k,)tj

The Green’s function takes the form of a wave packet in the (x, O-
plane. Along each ray x/t within the packet, the response is dominated
by a specific complex wave number k, such that its real group velocity
satisfies (11). The temporal growth rate along each ray reduces 
~o,(k,)- (x/Ok,,.

In most problems of interest, the temporal growth rate oi(k), real,
reaches a maximum ~oi .... -= e~i(kmax) at a real value kmax such that

~ (kmax) = (13)

This same maximum growth rate Ogi.max is observed within the wave packet
G(x, t) along the specific ray x/t = Oogr/Ok(kmax), and it is straightforward
to show thatit corresponds to the maximum attainable value of o- along
any ray x/t. Based on definitions (4) and (5), one therefore arrives at 
following trivial criterion for linear instability:

~oi .... > 0 linearly unstable flow,

o9i .... < 0 linearly stable flow. (14)

In order to distinguish between convective and absolute instabilities, it
is further necessary to examine, according to definitions (6) and (7), 
long-time behavior of the wave number k0 observed along the ray x/t = 0
at afixed spatial location. This complex k0 has, by definition, a zero group
velocity

~k (ko) = (15)

and the corresponding ¢Oo- co(k0) is commonly called the absolute
frequency. The absolute growth rate is then denoted by e)0.i = o)i(k0). 
other words, the absolute growth rate co0,i characterizes the temporal
evolution of the wave number ko observed at a fixed station in the limit
t ~ oo. By contrast, the maximum growth rate O)i,ma x defined previously is
observed following the peak of the wave packet. Just as the sign of o)i.max

www.annualreviews.org/aronline
Annual Reviews

A
nn

u.
 R

ev
. F

lu
id

. M
ec

h.
 1

99
0.

22
:4

73
-5

37
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
Sa

n 
D

ie
go

 o
n 

04
/2

7/
06

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.annualreviews.org/aronline


LOCAL AND GLOBAL INSTABILITIES 483

determines the unstable/stable nature of the flow, the sign of co0,,, determines
its absolute/convective nature. One therefore is led to the following
criterion:

co0,i > 0 absolutely unstable flow,

co0,,~ < 0 convectively unstable flow. (16)

Typically, the absolute frequency 090 is an algebraic branch point of the
function k(co) in the complex co-plane or, equivalently, k0 is a saddle point
of co(k). It is important to note (Chomaz et al. 1989a) that the growth 
along any ray admits coi .... as an upper bound, as mentioned previously.
Thus, one necessarily has

(00,i ~. (2)/,max. (17)

Application of the above criterion to model equation (8) immediately
leads to expressions for k0 and co0. For future reference, one notes that
the Ginzburg-Landau equation can then be recast in a form involving coke,
k0, and coo only:

~J
~b i ~2~j [

~O~kk~l~b = 0.
(18)~- -cok,k0 ~ - ~co~, ~ +i co0(/~)+ 

The dispersion relation associated with (18) is o9-co0 = (¢~gk/2)(k--ko)~,

a clear indication of the presence of a second-order algebraic branch point
at 09 = 090. The linearized Ginzburg-Landau equation is indeed
the simplest evolution model giving rise to an absolute or convective
instability.

As emphasized by Briggs (1964) and Bers (1975), the absolute/convective
instability criterion given by Equations (l 5) and (16) is not precise enough
as it stands. For the purpose of illustration, we assume that the temporal
mode co(k) exhibits a single second-order algebraic branch point coo with
only two spatial branches k+(~o) and k-(co). One must then carefully
monitor the loci ofk÷(co) and k (co) when co travels along the L contour.
As a preliminary remark, it can be argued that when L is located above
all the singularities of D, none of the spatial branches k+(og) and k-(ro)
can cross the horizontal line F in the complex k-plane (see, for instance,
Figure 2a). When x > 0 (x < 0), the contour Fis closed in the upper (lower)
half k-plane and different spatial branches k+ (co) and k-(co) contribute 
the response in different regions of physical space. Two radically distinct
situations may then take place.

First, as depicted in Figure 2a, the spatial branches k÷ and k- may be
located, when L is high enough, on opposite sides of F. Then, as L is
displaced downward, both curves move toward each other (Figure 2b). 
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484 HUERRE & MONKEWITZ

this process, one must correspondingly deform the original contour F. Of
course, the simultaneous deformation of L and F must cease when L
touches o(k) and F becomes "pinched" between the branches k+(co) 
k-(m), as sketched in Figure 2c. Pinching occurs precisely at the point k0
where the group velocity &o/Ok is zero. Correspondingly, a cusp appears
at coo in the locus of co(k), a feature that can be used to detect the branch
point, as demonstrated by Kupfer et al. (1987). If the corresponding coo 
located in the upper half ~o-plane, the instability is absolute. Otherwise, it
is convective. This method of determining whether an instability is absolute
or convective is commonly called the Briggs (1964) criterion. In the Soviet
literature (see, for instance, Mikhailovskii 1974) it is referred to as the
Fainberg-Kurilko-Shapiro (1961) condition.

Other situations may also arise (Bets 1983, Pierrehumbert 1986, Huerre
1987, 1988) when the Riemann sheets of the branch point coo correspond
to spatial branches [say ki~(~o) and k~+(co)] located, for high enough L, in
the same half k-plane. When the contour L is lowered, no pinching of F
can occur and the corresponding branch point coo is not the absolute
growth rate. Thus, extreme care must be exercised to locate branch-point
singularities pertaining to spatial branches k+(o~) and k-(~o) originating
from distinct halves of the k-plane.

In the above discussion, we have only considered the simplest situation
where co(k) exhibits a saddle point at k0. It should be observed, however,
that the analytical structure of the dispersion relation needs to be studied
in detail on a case-by-case basis in order to reach reliable conclusions
regarding the nature of the instability. For instance, in flows such as mixing
layers (Huerre 1983, Huerre & Monkewitz 1985), the temporal modes co(k)
display a nonanalytic behavior of the form o9 ~ Ikl as k approaches zero.
A branch cut must then be introduced on the ki axis to properly interpret
the absolute value arising in the dispersion relation: Another approach,
described in Huerre & Monkewitz (1985) and Huerre (1987), consists 
associating with the real signal ~(x, t) the complex "analytic signal" qU(x, t)
defined by

[ il*~b(x,t), (19)~e(x,t) = ~(x)+ 

44x, t) = ~r(x, t). (20)
The symbol ̄  denotes the convolution of two functions in x. The spectrum
of W(x, t) is, by definition, restricted to positive wave numbers, and the
study of the deformations of the spatial branches can be limited to the
half-plane kr > 0 and its corresponding image in the o-plane. In this
manner, I k[ can be replaced by k in the dispersion relation. The real signal
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LOCAL AND GLOBAL INSTABILITIES 485

@(x, t) is retrieved at the end of the calculations by taking the real part 
v(x, t).

It may also happen that no branch points ~o0 where &o/Ok = 0 can be
found in the finite complex co-plane. This peculiar behavior arises in the
G6rtler instability of the asymptotic profile on a concave plate (Park 
Huerre 1988). The criterion (16) is not directly applicable, and one must
resort to a direct numerical evaluation of G(x, t) to safely conclude that
this flow is indeed convectively unstable.

The physical significance of the spatial branches k+(co) and k-(co)
becomes evident when one considers the response of a system to a mono-
chromatic excitation of frequency cof applied at, say, x = 0 and switched
on at t = 0. The field ~k(x, t) is such that

. O i~;R]t~(x,t) = 6(x)H(t)e_~o¢.
(21)

A solution of this problem is readily obtained in Fourier space. As in the
case of G(x, t), the inverse Fourier transform with respect to o) is evaluated
from a residue calculation. If a single discrete temporal mode co(k) exists,
O(x, t) takes the form of a Fourier integral over all wave numbers, namely

q,(x,t) = ~ ~

e-~d I+~ eikX
dk

+ ~-~ L~ Z)[k~f;R] " (22)
As t ~ ~, the first term can be obtained asymptotically in exactly the
same manner as before by applying the method of steepest descent. The
second term is calculated by closing the contour F in the upper (lower)
half k-plane for x > 0 (x < 0), as indicated in Figure 2a. Residue con-
tributions arise from the k+(or) and k-(or) of the dispersion relation 
the fixed frequency co¢. One arrives at the following estimate:

ei[k,x-
~(X, t) ,-~ (2/~)1/2e-i~/4

0D d2co
[co(k,)-o)~]~[k,,co(k,)][-~-~(k,)tI

ei[k + (~r)x- wrt] ei[k - (wr)x 
+ i OD H(x) - i 

~ [ k+ (coO, cof; R] ~ [k-((.of), (Df; 

H(-x), (23)
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486 HUERRE & MONKEWITZ

where k, is given along the ray x/t by Equation (11), and H(x) denotes
the Heaviside unit step function. The response is composed of a switch-
on transient of the same qualitative nature as the Green’s function (12)
and a "steady-state" response arising from forcing the flow at the frequency

cot. Spatially growing and/or decaying waves are located on either side of
the source at x = 0. It is important to note that the spatial branches
and k-(o)f) have unambiguously been assigned to the domains x > 0 
x < 0, respectively. This can only be achieved if one has a priori determined
(see Figure 2) that, for high enough L, they originate from the upper and
lower half k-plane, respectively. If the flow is absolutely unstable, the
transient part of the solution will, by definition, contaminate the "steady-
state" response at all stations x, thereby making the signaling problem
meaningless. If the flow is convectively unstable, transients move away
from the source and one observes the steady-state signal associated with
the spatial waves. It can be concluded that spatially growing waves at a
real frequency of are only of interest in convectively unstable flows. This
feature becomes particularly obvious in Section 4, where we discuss ex-
amples of convectively unstable shear flows.

The characteristics of the spatial branches are sketched in Figure 3 in
the case of the linearized Ginzburg-Landau equation. The solid curves
pertain to a value of R in the convectively unstable range R~ < R < Rt,
where k+ and k- are well separated (see also Figure 2a). When R exceeds
/~t and the flow becomes absolutely unstable, the branches switch, as
illustrated by the dashed curves. Thus, as R increases through Rt, the
frequency coo crosses the real co-axis, and the corresponding saddle point
k0 leads to splitting of the branches in its vicinity. Branch switching in
spatial stability calculations can be effectively used as an indication of a
qualitative change in the nature of the instability from convective to
absolute.

(a) (b)

kr

Figure 3 Spatial branches k+ and k- of the Ginzburg-Landau equation in
unstable case (--). (a) spatial growth rate -ki versus real frequency 
Branch interchange in the absolutely unstable case ( .... ).

the convectively
(b) k. versus
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LOCAL AND GLOBAL INSTABILITIES 487

The concepts introduced in this section may very well appear to be
trivial: A flow that is convectively unstable in one reference frame becomes
absolutely unstable in another. There is no preferred laboratory frame
in parallel flows that are invariant under Galilean transformations. We
therefore wish to emphasize that absolute/convective instability properties
become relevant precisely when Galilean invariance is broken. This is
achieved either by applying an external perturbation at a fixed downstream
station as described above, or by imposing no-slip conditions at the walls
as in plane Poiseuille flow, or finally by allowing the flow to develop
spatially. In all such cases, a unique laboratory frame is selected and local
instability characteristics are unambiguously defined. In the next section,
we examine one particular example of broken Galilean invariance, namely
spatially developing flows.

3. GLOBAL-INSTABILITY CONCEPTS:

SPATIALLY EVOLVING FLOWS

The previous section dealt with absolute/convective instability concepts in
strictly parallel flows, i.e. basic flows that are invariant under continuous
translations in the streamwise x-direction. Most shear flows of interest,
however, such as mixing layers, jets, wakes, and boundary layers, are
nonuniform in x. The purpose of the present section is to emphasize the
deep relationship that exists between, on the one hand, the local instability
characteristics at each streamwise x-station and, on the other hand, the
global instability properties over many wavelengths of the instability.

The spatial development of the basic flow is typically characterized by
an evolution length scale L defined as

1 ldO

L - 0 dx’
(24)

where O(x) is, say, the local momentum or vorticity thickness. The main
parameter of interest is then the ratio

~ ~ Z << 1, (25)

where 2 is a typical instability wavelength. If the streamwise coordinate x
is nondimensionalized with respect to 2, the basic flow changes over a slow
space scale X = ~x and takes the form U[y; 0(X)], where O(X) is in effect
a local control parameter. One of the crucial hypotheses here is that e
is small. A breakdown of this assumption would preclude any possible
connection between local and global instability properties. Following the
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488 HUERRE & MONKEWITZ

general framework previously outlined, fluctuations $(x, t) now satisfy 
linear partial differential operator of the form

L -i ,i~;O(X),~,...;R ~ = O. (26)

The local dispersion relation is recovered by freezing X, so that

D[k, o9; X, R] = L[k, o9; O(X), 0,... ; R]. (27)

Absolute/convective instability concepts are readily applicable to (27). 
particular, if the dispersion relation admits a single mode of the fo~
~[k; X; R], one defines a local absolute frequency ~0(X; R) and its cor-
responding wave number ko(X; R), given by

~(~o; ~;~) = 0, ~0(x; ~) ~ o~(~o; x; (~8)

Similarly, one introduces a local complex frequency ~max(~ R), a local
maximum growth rate ~i,max(X;R), and corresponding wave number
kma~(X; R), such that

~’(~m.~;X;R) = 0, ~m.~(X; R) ~ w(k~.x; X; (29)

The Ginzburg-Landau evolution model can then be generalized by
allowing ko and ~0 appeafng in (18) to depend on X. As is justified later,
we choose to keep the leading-order terms in a Taylor expansion ofko and
~0 around a point X~ in the complex X-plane such that O~o/8X = 0. Thus,
one assumes that

~0(~; R)
~0~= o)~(~) + ~ (X- (30)

k0(X; R) = g0(X) = ~ + g0~X- (3 ~)

where k~, kox, and w0a-x are given complex constants with ~oa~;~ < 0, and
~,~(R) is a monotonically increasing function of 

Spatially developing flows may then be dividcd into four broad classes
according to the nature of the local instability at each streamwise station.
Typical configurations have been illustrated in Figures 4a-d. In the first
class (Figure 4a), the flow is locally stable un~ormly along the streamwise
direction and ~ .... < 0, ~0,~ < 0 for all X. When a region of local con-
vective instability is present (Figure 4b) where ~i,max > 0, ~0,i < 0, the flow
is said to be locally convectively unstable. Such systems behave as amplifiers
of external disturbances. They are globally stab& in the sense that no self-
sustained resonant states may arise. The te~ "globally stable" is used

www.annualreviews.org/aronline
Annual Reviews

A
nn

u.
 R

ev
. F

lu
id

. M
ec

h.
 1

99
0.

22
:4

73
-5

37
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
Sa

n 
D

ie
go

 o
n 

04
/2

7/
06

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.annualreviews.org/aronline


(a)

LOCAL AND GLOBAL INSTABILITIES 489

~
~ °~i’raax(X)

(c) (a) ~ o,ilmax

_.~I"-W’, ~ x ~ !~~ x
~i(X) l O)°’ilmax tO°’i(X)

Figure 4 Classes of spatially developing flows according to the nature of the local instability.

(a) uniformly stable; (b) convectively unstable; (c) almost absolutely unstable; (d) pocket 

absolute instability.

here with a meaning that is different from classical hydrodynamic stability
theory. We do not imply that the flow is stable to all finite-amplitude
perturbations, merely that it is stable with respect to global infinitesimal
fluctuations in the entire flow field. Specific examples are discussed in
Section 4. In the third class of flows, the maximum absolute growth rate
over all X, co0,i] ..... is still negative but very small (Figure 4c). As men-
tioned in Section 5, these almost absolutely unstable flows may admit
weakly damped global modes that are preferentially amplified by forcing
the flow in the neighborhood of the global frequency. They are marginally
globally stable. Finally, in the fourth class of flows (Figure 4d), the curve
o)0,i(X; R) has crossed the X-axis and local absolute instability prevails in
a finite region along the stream. It is argued later in this section that
such systems may exhibit self-excited global modes at specific complex
frequencies eta: They are globally unstable. Examples of locally absolutely
unstable flows are presented in Section 6. It should be emphasized that
some shear flows may change from one class to another as the control
parameter R is varied, whereas others remain within the same class.

3.1 Signaling Problem in Locally Convectively

Unstable Flows

Most linear stability analyses of spatially developing flows have been
restricted to locally convectively unstable situations of the kind illustrated
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490 HUERRE & MONKEWITZ

in Figure 4b. For instance, the WKB approximation has been applied to
circular jets by Crighton & Gaster (1976) and to mixing layers by Gaster
et al. (1985). There is an extensive literature on the subject, and one only
needs to recall here the salient features of this type of analysis. The starting
point is the governing linear partial differential equation (26). It is assumed
that, at x -- X -- 0, the flow is excited at a given real frequency ~r, and a
time-periodic response is sought in the form

O(x, t; X) = ¢’+(x; X)e-’°¢, (32)

where the + and - superscripts pertain to the domains x > 0 and x < 0 on
either side of the source. Since the flow is slowly evolving on the stream-
wise scale X = ex, it is legitimate to seek leading-order approximations

where the spatial branches k÷ and k- satisfy the local dispersion relation

D[k +-(X; ~or), gOf; X; R,] = O. (34)

We note that the downstream and upstream branches k+ and k are
unambiguously identified by following, for each X, the contour-defor-
mation arguments outlined in Section 2 (see Figure 2). Application of 
standard multiple-scale formalism to the governing equation (26) then
leads at O(e) to the linear evolution equations for the complex amplitudes
A+ and A-:

O~ + dA+
i~k [k-(X; o~31~- +p +-(X)A+ = 0, (35)

where p -+ (X) are Computed by imposing suitable orthogonality conditions.
The WKB solution (33) is seen to capture the global response of the

flow over streamwise distances of the order of L, the evolution length scale
of the basic state. This method allows a comprehensive treatment of the
receptivity of a given flow to various input frequencies. In particular, one
may determine the specific forcing frequency ~or that will achieve the
maximum amplitude gain over the total streamwise extent of the flow.
Results of this formulation are illustrated in Figure 5. Within the unstable
frequency band, one obtains amplified waves in the region x > 0 and a
decaying tail upstream of the source (x < 0).

3.2 Global Modes in Spatially Developin9 Flows

In the previous analysis, we examined the response to a perturbation of
known real frequency ~of. However, spatially developing flows might very
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Figure 5

LOCAL AND GLOBAL INSTABILITIES

Sketch of response to time-harmonic forcing in spatially developing flows.

491

well support self-excited global modes in the absence of external forcing.
In the present context, a global-mode solution is defined as

~b(x, t; X) = q~(x; X)e-~°’. (36)

In contrast with the signaling problem, the complex frequency ~oG is an
unknown quantity. Its value is to be determined by solving the governing
equation (26) for q~(x; X), subject to suitable homogeneous boundary
conditions. For the class of doubly infinite systems under consideration
here (see Figure 4), it is required that disturbances decay at x = _+_ c~. 
a semiinfinite domain 0 < x < ~, one could impose, for instance, the
condition that ~/, be zero at x = 0, ~. In any case, the complex frequency
~oa is now an eigenvalue and q~(x;X’) its associated streamwise eigen-
function. The obvious criterion for global stability or instability is

~o~.i < 0 globally stable flow,

~oG.i > 0 globally unstable flow. (37)

Several global modes are in general possible, and in order to ensure
stability, one naturally must require that ~oG.i be negative for all eigen-
values. The limiting case ~o6,~ = 0 marks in general a bifurcation point to
a global mode for the entire flow. An example of a global-mode solution
is shown in Figure 6 for the Ginzburg-Landau model (18) with varying
coefficients (30)-(31) on a doubly infinite domain. The smooth shape of 
should be compared with the discontinuous solution of the response prob-
lem sketched in Figure 5. More importantly, note that at the location
where the local absolute growth rate ~o0.~ reaches a maximum, the global-
mode amplitude is still very small compared with its maximum. This
situation does not seem to be exceptional and serves to dispel the notion
that the region of local absolute instability, and in particular the region
where ~o0.~ is largest, coincides with the region in which the "action" is
observed (i.e. where global modes reach maximum amplitude). Hence, 
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492 HUERRE & MONKE~VITZ

Figure 6 Global mode in spatially developing flows according to the Ginzburg-Landau
model with the underlying absolute growth rate ~oo,,(x).

picture of a rather subtle, self-excited, low-amplitude "wavemaker" in the
region of local absolute instability emerges, which acts as a source for the
downstream instability wave(s). These latter waves develop downstream
in a fashion very similar to ordinary spatial modes and reach a maximum
amplitude approximately where they become neutral on a locally parallel
basis.

It is natural to inquire whether the existence and the characteristics of
global modes are at all related to the local instability properties of a given
flow, as sketched in Figure 4. The possibility of a self-excited resonance
due to the presence of a region of local absolute instability was first
explored by Pierrehumbert (1984) for a zonally varying two-layer model
of the baroclinic instability. The configuration was essentially the same as
in Figure 4d. It was demonstrated that the slowly varying baroclinic flow
in a doubly infinite domain could support global modes growing at the
maximum absolute growth rate ~o0,,’[max over the entire streamwise extent
of the flow (-oo < x < + oo). Koch (1985) considered instead the semi-
infinite spatially developing mean flow in the wake of bluff bodies (see
Section 6) and showed that a region of local absolute instability existed
immediately behind the cylinder in the von Kfirmfin vortex-street regime.
The connection between local and global properties has been explored
further by Chomaz et al. (1987, 1988) for the Ginzburg-Landau model 
a semiinfinite domain 0 < x < ~o with boundary conditions ~(0)=
0(~o) = 0. A stabilizing cubic nonlinearity was added to model (18),
and the local absolute frequency was assumed to vary linearly as
co0(X) = co0(0)+ co;X, co~,i < 0. All other coefficients of the equations 
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kept constant. The following scenario emerged as co0,,(0) was gradually
increased. In the range of uniform local stability, the system exhibited
global stability. As a region of local convective instability appeared near
the origin X = 0, numerical simulations revealed a regime of global tran-
sient instability (Davis 1976) in the sense that disturbances grew in a finite
region of the (x, 0-plane but the system remained globally stable for large
time with no self-sustained resonances. With further increases in ~o0,,(0), 
zone of local absolute instability occurred near .,Y = 0. If that pocket was
sufficiently small, the global transient instability persisted. Beyond a critical
size, however, the system became globally unstable and a Hopf bifurcation
to a self-sustained global mode took place. Thus, in the context of the
simple model, it was concluded that the existence of a region of local
absolute instability was a necessary but not sufficient cotkdition for the
existence of an amplified global mode. Similar conclusions were reached
in numerical simulations of the Ginzburg-Landau model on a doubly
infinite domain (Chomaz et al. 1989b), with parabolic variations of the
local absolute frequency as in Equation (30). In Section 6 it is seen that
the above scenario is entirely consistent with hydrodynamic-stability
analyses and experimental observations in wakes and jets.

A fundamental question arises in the study of global-mode properties:
What is the frequency-selection criterion for o9~? More specifically, is it
possible within the slowly varying WKB approximation to obtain a lead-
ing-order estimate of the global-mode frequency from local stability
characteristics alone? As alluded to earlier, Pierrehumbert (1984) has sug-
gested that in doubly infinite systems of the kind sketched in Figure 4, co6
is given by co0,rl .... namely the real part of ~o0 at the streamwise location
of maximum absolute growth rate ~o0.il .... In semiinfinite systems
(0 < X < m) with a single pocket of absolute instability close to the origin,
Koch (1985) proposes yet another selection principle: The global-mode
frequency should, in his view, lock to the local absolute frequency
~o0,r(Xt) = ~o0(X0 at the streamwise station Xt separating the absolute and
convectively unstable regions. The authors of this review doubt that any
of the above criteria could be rigorously justified from a theoretical point
of view. It seems to us that in doubly infinite systems with local instability
properties such as those described qualitatively in Figure 4 (i.e. a local
absolute growth-rate curve with a single maximum), a more appropriate
selection criterion is as follows: To leading order in the WKB parameter
e, the most unstable global-mode frequency is given by the local absolute
frequency cos = ~o0(Xs) at the point X~ in the complex X-plane such that

~ (x~; = 0. (38)
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494 I-IUERRE & MONKEWITZ

The point X~ is the saddle point of the function O~o(X) in the complex 
plane that lies closest to the real X-axis, as sketched in Figure 7. This result
has been derived by Huerre et al. (1988) and Chomaz et al. (1989a) for 
class of linear partial differential equations of the Ginzburg-Landau type
(18) with arbitrary variations for co0(X) and k0(X). One of the essential
assumptions of the study is that the function ~o0(X) exhibits a saddle point
X, in the complex X-plane. Furthermore, under these conditions, it is
possible to show that the following inequalities hold:

~OG,i ~ CO0,i(Xs) ~ (D0,il .... (39)

where coG,; is the growth rate of any global mode, and ~O0,;]m,x is the
maximum absolute growth rate over the real axis - oo < X < + oo. As a
consequence of (39), we recover the fact that the existence of an amplified
global mode with ~oG,i > 0 necessarily implies a finite region of absolute
instability--in other words, co0,i[max > 0. The frequency-selection criterion
(38) had in fact been implicitly derived by Bar-Sever & Merkine (1988) 
the specific context of weakly diverging large-scale geophysical flows. A
related "mode-conversion" formulation has been developed by Fuchs
et al. (1981) to describe the evolution of instability waves in a weakly
inhomogeneous plasma.

k" subdominant

Xi

~ HILL

Region-
~

k+ subdominant

XF

Figure 7 Sketch of different regions in the complex X-plane (X = ex). The curves represent
contours ~%.i(X) = constant in the vicinity of the saddle point s. Shaded area denotes the
inner turning-point region of size O(~l/z).
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Going back to the original dispersion relation co(k; X; R), the frequency-
selection criterion takes the following symmetric form:

~k(ks;Xs;R) = 0, ~( s; s;R) = 0, os = o(ks;Xs;R). 

It is interesting to see that the wave number k and streamwise coordinate
Xplay the same role in (40). Both have to be considered complex, and the
global-mode frequency coo is determined by the singularities of the local
dispersion relation.

If a saddlc point Xs of co 0(X) exists in the complex Z-plane, it is possible
to develop a general formulation of global-mode characteristics from
the linearized two-dimensional vorticity equation. Both the x- and y-
coordinates are then eigenfunction directions, as discussed in Monkewitz
et al. (1989b), and the theory is applicable to arbitrary spatially developing
flows. Following the spirit of this review, we choose instead to outline the
main features of the analysis, starting from the linear partial differential
equation (26). The contours of constant co0,i(X) are assumed to be as 
Figure 7, with a single maximum co0,ilmax of co0.i on the real X-axis, and
global modes of the form (36) are sought with boundary conditions
~(+_ oe; +_ oo) = 0. The unknown complex frequency cob is expanded 

co6 ~ cos+eco2+ .... (41)

where cos is given by (38), and coz is an unknown correction term. The
methodology is similar to the one used by Pokrovskii & Khalatnikov
(1961) in the study of particle reflection across a potential barrier. Several
domains in the complex X-plane need to be considered separately. In the
outer regions + and - (see Figure 7), the distribution of perturbations 
expressed as in the signaling problem, namely

The branches k+ and k- are sclectcd in the + and - regions, respectively,
so as to satisfy the boundary conditions at +_ oo. From the enforcement
of orthogonality conditions at higher order, one is led to the evolution
equations,

co +(3 dA-
i-- [k-+(X; ~Os)] ~ + [co2 +p+-(X)]A -+ = 0, (43)
Ok da

which can be compared with the corresponding result (35) in the signaling
problem.
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496 HUERRE & MONKE’WITZ

In the turning-point region of size O(8 ~/2) around X, (see Figure 7), 
inner variable ~ = (X-X,)/e~/~ is introduced and the solution is given by

~S(x; X) ,,~ #(e)e/(.17-)e;~,(~-*0, (44)

where the gauge function #(e) and the amplitude function A(X) are
unknown. The evolution equation for ~/(~) is determined, as before, by 
suitable orthogonality condition applied at higher order. One finds

1 d2d _ dd [ 1 2 -- 2-I --

~cok~ ~ --icokkkox X~ +t_°92--6°9-- }(co~kkox+moxx)X AA = 
(45)

where the coefficients COkk, kox, and COoxx arise from the Taylor expansion
of the dispersion relation co(k; X) and of the absolute frequency co0(X)
around ks and X~. The constant cSco is a genuinely nonlocal effect that need
not concern us here. Provided one makes the substitution - ico2 ~ a/aT,
the governing equation (45) in the inner region is seen to be of the linearized
Ginzburg-Landau type (18). This is an a posteriori justification for choos-
ing this model in the first place: It arises in a rational approximation
scheme of global-mode characteristics in arbitrary spatially developing
flows with local instability properties as sketched in Figure 7. The cor-
rection term 092 is determined by matching inner and outer solutions. A
smooth "conversion" from the k+ to the k- branch occurs in the inner
region provided that the global-mode frequency is restricted to take the

discrete values

¢oo,,~cosq-elcS(.o--~(.o~,~,koxq-(cooxxC.Ok,~)t/2(n-.[-~)l, (46)

where n is an integer. With the exception of the constant 6co, the complex
frequencies co~, are solely expressed in terms of the local instability charac-
teristics in the vicinity of the saddle point X~.

The estimate (46) also holds when the y-structure is included (Monkewitz
et al. 1989b). The eigenfunction distribution in y is then merely slaved to
the slow variable X. Several caveats are in order, however. Formula (46)
is only the result of a linearized analysis. It excludes nonlinear effects,
which are likely to become important far away from bifurcation points.
Furthermore, at large values of n the double turning point X~ is replaced
by two first-order turning points X~ and X,2, and formula (46) becomes
useless. The global eigenvalues c%~ are then determined by integral prop-
erties of the local dispersion relation over streamwise distance X.

It is convenient to think of Figure 7 as a level-contour plot of the surface
COo,~(X~, X~), where the value of COo,i measures the "altitude," or level, of a
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LOCAL AND GLOBAL INSTABILITIES 497

given point X. Since ~o0,i(Xs) -~ ~o0al .... the point of maximum absolute
growth rate on the real axis X~ is always on a "hill" of the saddle point X~.
We may then propose the following general scenario as a global control
parameter R is increased. When c00,ilm~x is negative, the flow is locally
convectively unstable everywhere on the Xr-axis and the saddle point Xs is
necessarily at a level Ogo,~(Xs) < 0. According to the frequency-selection
criterion, the flow is therefore globally stable. When ~O0.ilmax becomes posi-
tive, a pocket of absolute instability appears on the Xr-axis but the saddle
point Xs may still be at a negative level, so that the flow remains globally
stable. Finally, when the pocket of absolute instability reaches a critical
finite size, the saddle point is raised to a level ~o0,i(X~) > 0 and a bifurcation
to a self-sustained global mode takes place. If B(t) denotes the complex
amplitude of the global mode, the evolution equation near the global
bifurcation point R% is of the classical Landau form, namely

dB

d~ = Cl(R--RGc)B--c2lBl2B+ fl’
(47)

where c~(R--R~) is the linear temporal growth rate, and c~ > 0 for a
supercritical bifurcation. The complex constant fl is a forcing term added
for later reference,

4. EXAMPLES OF GLOBALLY STABLE FLOWS

In many cases where a purely convectively unstable open system is
involved, some form of steady-periodic forcing is present, such as free-
stream disturbances coupling into instability waves at solid trailing edges
or other spatial inhomogeneities. As discussed above, in such systems
the downstream evolution of linear disturbances in the long-time limit is
described by spatial theory, pioneered by Gaster (1965), Michalke (1965),
Tam (1971), and others. Any spatial development of the basic flow 
thereby handled by locally parallel theory or, at a higher level, by the
"slowly diverging" formulation (see Section 3.1 and, for instance, Crighton
& Gaster 1976). A full discussion of the vast literature on fully convectively
unstable flows is beyond the scope of this review, and only a few examples,
which have explicitly been proven to be convectively unstable, are compiled
in the summary tables. In an even smaller number of cases, such as the
laminar flat-plate boundary layer (Gaster 1968, 1975, Gaster & Grant
1975), the rotating disk (Wilkinson & Malik 1985, Mack 1985, Reed 
Saric 1989), and the mixing layer (Balsa 1988, 1989), the transient response
has been investigated and found to correspond to the convective type
sketched in Figure lb.
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498 HUERRE & MONKEWITZ

The main point we want to make in this section is that global instability
can arise from feedback not only by upstream-propagating vorticity (insta-
bility) waves, but also by irrotational global pressure feedback, governed
in the incompressible inviscid limit by the Poisson equation

O2(uiuj)
(48)V2P- OxiOxj’

where p, ui, and xi denote the pressure, the three velocity components, and
the usual Cartesian coordin&tes, respectively. As discussed by Ho & Huerre
(1984, Sect. 5), Morkovin (1988), and Buell & Huerre (1988), the 
tially most powerful sources in (48) are found on the boundaries of the
flow domain or on solid boundaries within, although "volume sources"
such as "vortex pairing" events in the mixing layer may also be significant
(Dimotakis & Brown 1976, Laufer & Monkewitz 1980). It is well known
that pressure feedback from solid surfaces placed into a shear flow down-
stream of its origin often leads to global instability in the form of
"edge-, .... collar-, .... cavity-," and other tones (Rockwell & Naudascher
1979). Not surprisingly, the same effect can also be achieved "artifi-
cially" by electronic feedback, which is addressed in the conclusion.

More surprisingly, a global instability may also arise in numerical cal-
culations carried out in finite computational "boxes." It was first noticed
in a spatial mixing-layer calculation by Lowery & Reynolds (1986) that,
depending on the length of the box, disturbances persisted indefinitely
after the forcing was turned off. Buell & Huerre (1988) fully investigated
this phenomenon and discovered that even without any intentional forcing,
a transient is generated at the upstream boundary of the computational
domain by the mismatch between the assumed initial condition at t = 0
and the boundary condition at t > 0, a mismatch that can only be avoided
if the solution is known a priori. Figure 8 shows how the resulting wave
packet propagates to the end of the box. There it creates a sharp pressure
change that is instantaneously felt at the inflow boundary, generates a
sccond wave packet, etc., until the multiple reflections lead to a self-
sustained dynamical state, which is noisy for this particular box length.
Such behavior demonstrates that numerical simulations, very much like
laboratory experiments, may exhibit undesirable resonances and, generally
speaking, be plagued by "facility effects."

A second point we wish to emphasize is that although the basic flow
may be convectively unstable, instantaneous velocity profiles of the dis-
turbed basic flow can be absolutely unstable with respect to secondary
disturbances. Such a concept can be justified, if the scale of the secondary
instability is very much smaller than the scale of the primary disturbance,
and was first proposed by Landahl (1972) with specific reference to the

www.annualreviews.org/aronline
Annual Reviews

A
nn

u.
 R

ev
. F

lu
id

. M
ec

h.
 1

99
0.

22
:4

73
-5

37
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
Sa

n 
D

ie
go

 o
n 

04
/2

7/
06

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.annualreviews.org/aronline


LOCAL AND GLOBAL INSTABILITIES 499

0 100 200 300 400 500 600 t

Figure 8 Time traces of velocity v at x = I, 50, 85, 115, 140, 160, 180, 200, 220, 249 (from
bottom to top). Each trace is scaled with its maximum amplitude. Downstream boundary is
at x = 250 (from Buell & Huerre 1988).

inflectional profiles above low-speed streaks in a boundary layer (see also
the models in Huerre 1988).

5. MARGINALLY GLOBALLY STABLE FLOWS

Before. discussing examples of globally unstable flows in ~he next section,
we first consider systems that are only marginally globally stable, which
means that the highest global mode is only marginally damped [i.e. that
the global temporal growth rate of the zeroth mode (o~0,i, defined by
Equation (46), is only slightly less than zero]. This situation often arises
when a flow is almost absolutely unstable, as shown in Figure 4c. One
intuitively expects such a system to behave like a slightly damped linear
oscillator: If excited at or close to the resonance frequency, a small forcing
amplitude of the order of the damping rate produces a large response of
order unity.

Using the model.equation (18), which hasbeen shown’in Section 3 
essentially determine the global behavior, we proceed to establish-the.
analogy between a marginally globally stable, spatially developing flow,
and a simple, slightly damped oscillator. Following Monkewitz et al. (1987)

and Chomaz et al. (1989b), we adapt the Ginzburg-Landau model 
follows. First, a forcing term is added to (18) to represent a concentrated
steady-periodic excitation at the station xr with amplitudefand frequency
(of:

O~b O~k i ~2~ [
(Dkk 21

~ --(okklCo TXX -- ~0~ ~X~ + i (oo+ ~-ICo ~ = f6(x-- x~)e-i~f’,

I~l-~0. for. Ixl~. (,49)
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In addition, we use the expansions (30) and (31) of (o0 and k0 around
and ks, respectively, and for the present purpose eliminate the slow variable
X according to X = ex. Next, we characterize the damping rate of the
global mode by the small parameter/~ << 1 and set

(.OOxx : ~OXX,~+ i~oxx.i,

ko~ = iko~,, + ~Ko~,,, (50)

where ~,i, ~0xx,~, ~g,~, and Kox,, denote given constants of order unity. If
we neglect the nonparallel correction fi~ in (46), this leads to the zeroth
global-mode frequency

~0 = ~,~ + (~/2) [(~0rr,,~,~) ~/: + kox,,~,,] + i~[~,~ + O(~)]
~ ~o,~+ i~O~o,i, (51)

To keep matters simple, terms of order p~ have been neglected, and we
assume for consistency that e~ << ~ << e. Finally, the forcing frequency is
chosen close to the "resonance" frequency ~o,,, and its amplitude is taken
to be of order ~:

@ = ~0,, + ~AO, f = ~F. (52)

Equation (49) can now be solved, using the method of multiple scales.
From (50) and (51) it is clear that modifications of the global mode 
frequency ~0,r (to leading order) will occur on the slow time scale T = ~t.
The solution is therefore sought in the usual form, with the amplitude
function B(~ multiplying the leading-order solution ~ ~:

E(x) exp i ko(x’)dx’ . (53)

Inserting (53) into (49) yields, to leading order in 

~e(4~,) = ~2 + ~ (~-~Y 4~ = o,

with th~ solution

~, = exp (-- ~/4) He0(~),

(54)

~ =- c(x-xs), (55)
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where He0 = I is the zeroth Hermite polynomial. This is in essence the
mode shape of the highest free eigenmode. Its amplitude is determined at
the next order in # by

--2ickl ~T-ftsiG +FE5q(~b2)=-- 
’ I

’(x)6(x-xOe-iAar"
(Dkk,r

(56)

Application of a solvability condition and the requirement that the solution
be steady periodic leads to the final result

B(r) 
FH(xr)e-i~.nr

f~s,i + iAf~ ’
O(xf) =- iC(Dkk,r(87~)- 1/2E- l(xf) exp ( -- ~r~/4),

(57)

which is precisely the response of a slightly damped linear oscillator near
resonance, as anticipated. An example for such a slightly damped global
mode, maintained by low-level forcing, is the preferred mode in a jet,
which is also referred to as the jet-column mode. An operational definition
of this mode has been given by Ho & Huerre (1984), for instance, who
characterize it in a negative way as not resulting from a subharmonic
sequence starting at the jet nozzle. As a consequence, the Strouhal number
of the preferred mode is nearly independent of the jet Reynolds number
or, equivalently, the initial shear-layer thickness (Figure l 4 of Ho & Huerre
1984) and has a value of St ~ 0.25 for the two-dimensional jet and
St ~ 0.41 for the axisymmetric, low-subsonic, top-hat jet.

Monkewitz et al. (1987) have estimated the constants (50) from experi-
mental data in a two-dimensional jet (see Monkewitz 1989a) in order 
evaluate B(T) [Equation (57)] and the global-mode shape. The latter 
shown in Figure 6 which immediately allows us to conclude that the global-
mode amplitude in our doubly infinite domain is very small at the location
of the nozzle, which is to the left of where e)0,i = o)0,i[ .... This justifies, a
posteriori, omitting the nozzle and at the same time demonstrates the
insensitivity of Strouhal number to boundary conditions as a natural
ingredient of our model. On a quantitative level, Figure 9 shows a com-
parison between the results from (57) and the conventional approach 
evaluating, with locally parallel or slowly diverging theory (see Section
3.1), the total gain experienced by the spatial instability wave of frequency
of between xf and its (linear) saturation. From this example it appears that
our global-mode approach yields a sharper frequency-selection criterion,
more in line with experiments, than the locally parallel theory. Further-
more, the predicted Strouhal number St = 0.225 compares very favorably
with the experimental value St = 0.25.
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]

IBI
I B

I I I I I I

I I I I I I
0.1 0.2 0.3 St

Figure 9 Normalized gain in a two-dimensional jet from Equation (57) (--) and 
locally parallel theory ( .... ) (from Monkewitz et al. 1987).

6. EXAMPLES OF GLOBALLY UNSTABLE FLOWS

6.1 Wakes

Wake flows have recently served as the pacemaker for research into how
local absolute instability can lead to global linear instability and sub-
sequent self-excited nonlinear states. We immediately point out that in
most laboratory or numerical experiments, not specifically designed to
identify the small-amplitude stages of global instability, one observes only
the nonlinear results of the global instability, which are limit-cycle oscil-
lations for the examples considered here.

Although Betchov & Criminale (1966), Mattingly & Criminale (1972),
and Nakaya (1976) discovered the existence of branch-point singularities,
it was Koch (1985) and Pierrehumbert (1984) who sparked the current
interest in these concepts as applied to wake and geophysical flows, respec-
tively, and who explicitly suggested global frequency-selection criteria in
terms of local absolute instability (see Section 3.2). Koch’s criterion 
supported by the numerical simulation of Hannemann & Oertel (1989,
their Figure 16). Close agreement is obtained between the saturated von
K~irm~in vortex-shedding frequency and the Koch frequency c00(Xt), with
c00.,(Xt) = 0. This study appears to contradict our claim that Equation (40)
is the correct frequency selection criterion. We conjecture that ~o0,r(X) may
change only slightly as X varies from Xt to Xs, but we have no definite
evidence that this is the case.

Around the same time, Mathis et al. (1984) and, independently, Stry-
kowski (1986) demonstrated in landmark transient experiments that von
Kfirmfin vortex shedding at low Reynolds number is the result of a global
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instability (see also Provansal et al. 1987, Sreenivasan et al. 1987, 1989b).
By impulsively raising the Reynolds number from just below to slightly
above the critical value for yon K~rm~,n vortex shedding, these authors
were able to identify the supercritical Hopf bifurcation to a global mode,
the mode’s temporal exponential growth in the linear regime, and its final
nonlinear saturation in the form of self-sustained oscillations, commonly
referred to as the yon Khrmfin vortex street. In addition, they showed
that at near-critical conditions the temporal evolution of the characteristic
global-mode amplitude is accurately described by a Landau equation (47).
The saturation amplitude obtained from (47) by setting d]BI/dt = 0 is
given by

IBIsat oc (R--RG) 1/2, ~ = O, R ~ RGc. (58)

The experimental results of Strykowski (1986) displayed in Figure 
clearly show the exponentially growing (in time) linear global mode 
which the analysis of Section 3 applies. This concept of a bifurcation to a
global mode has been fully confirmed by Zebib (1987) and Jackson (1987)
with global linear stability calculations in which the temporal stability
characteristics (~o6 in particular) were determined on the computed non-
parallel basic flows.

Monkewitz (1988a) then firmly tied the local stability properties to the
observed global behavior by showing that the sequence of transitions in

(b)

Figure 10 The onset of von Kb_rm~n vor-
tex shedding after a step increase of the
Reynolds number (from Strykowski 1986,
Strykowski & Sreenivasan 1989, with per-
mission). (a) mean velocity (low-pass 
tered below 30 Hz); (b) fluctuating velocity.

0 1 2 t isecl

www.annualreviews.org/aronline
Annual Reviews

A
nn

u.
 R

ev
. F

lu
id

. M
ec

h.
 1

99
0.

22
:4

73
-5

37
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
Sa

n 
D

ie
go

 o
n 

04
/2

7/
06

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.annualreviews.org/aronline


504 HUERRE & MONKEWITZ

the cylinder wake, as the Reynolds number is raised, does indeed follow
the sequence in the model problem of Chomaz et al. (1987, 1988; see also
1989a): first, the transition from stability to convective instability, then
from convective to local absolute instability, and finally the bifurcation to
a self-sustained global mode only after a sufficiently large portion of
the flow has become absolutely unstable. We emphasize again that the
intermediate transition to local absolute instability is not observable in an
experiment, since the concept is based on "fictitious" locally parallel ve-
locity profiles. For the local stability calculations, a two-parameter family

. of symmetric wake profiles was used with variable wake depth and variable
thickness of the mixing layers on both sides of the wake. Matching these
analytical profiles to experimental mean velocity profiles, Monkewitz
(1988a) found transition to convective instability at a Reynolds number
R(D), based on cylinder diameter D and freestream velocity U~, of approxi-
mately R(D) ~ 5; the appearance of the first local absolute instability occurs
at R(m ~ 25, long before the onset of yon K/trmfin vortex shedding at the
experimentally determined R(°) = 4547, when a substantial portion of the
near wake is absolutely unstable.

In the case of a wake, one may think that absolute instability is closely
related to the existence of reverse mean flow to "carry information
upstream." That such an intuitive concept can be thoroughly misleading
is demonstrated by the "floating wake" (Triantafyllou & Dimas 1989) 
a circular cylinder immersed half-way into a uniformly flowing stream, as
depicted in Figure 1 la. As shown in Figure 1 lb, these authors demon-

(a)

0

(b)

1 2 3 4
F

Figure 11 The stability of the floating wake (from Triantafyllou & Dimas 1989, with
permission). (a) schematic of the mean flow; (b) absolute growth rate versus Froude number.
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(a) 

Figure 12 Streamlines of a numerical wake experiment without body at R = 100 (courtesy
of G. Triantafyllou). (a) mean-flow streamlines; (b) instantaneous streamlines.

strated that at low Froude number F = U~(gD/2)-~/2 the wake is con-
vectively unstable despite the reverse mean flow, whereas in the limit F-~
oe their branch II corresponds to the usual yon K/trmfin mode of a fully
immersed cylinder.

On the other hand, the idea that an explanation for von Kfirmfin vortex
shedding can be found in the details of the flow separation from the
cylinder surface has received a severe blow by an ingenious numerical
experiment of G. S. Triantafyllou (private communication). From a com-
putation of the flow around a cylinder that had reached a steady-periodic
state, he took the mean velocity profile immediately behind the cylinder
and used it as an inflow condition for a second computation without the
cylinder. The result was that the flow field (characterized, for instance,
by the mean and instantaneous streamlines of Figure 12) was virtually
indistinguishable from the original simulation. This lends strong credence
to the almost universal practice of simply disregarding the body in wake-
stability analyses.

THE EFFECT OF BASE BLEED AND DENSITY VARIATIONS ON VON KARMAN

VORXEX SI~EDOING The connection between local absolute instability and
global self-excitation becomes even more convincing when one looks at
the effect of additional parameters, such as base bleed and nonuniform
density. For the present purposes the very simplest inviscid and incom-
pressible, two-dimensional wake/jet with uniform velocity and density,
bounded by two vortex sheets, provides an excellent qualitative "road
map" of these effects. For this simple basic flow the following dispersion
relation is obtained in elementary fashion for both the sinuous and the
varicose mode, and for variable velocity ratio A as well as density ratio S:
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506 HUERRE & MONKEWITZ

S(1 +A-~o/k)~ e~+se~

(1-A-~o/k) 2 - e~-sek’

s = + 1: sinuous mode, s = - 1: varicose mode,

m = (Uwake/jet-- U~)/(Uwake/jetq- U~), S = Pwake/jet/P~- (59)

Since we are only interested in the branch points 090 that scale with the
wake/jet width, we need not be concerned here with the unbounded growth
rates as k-~ ~. To determine the boundaries between convective and
absolute instability in (S, A) parameter space, one can take advantage 
Equation (59)’s invariance under the transformation

S~S ~, A~--A, s~--s, (60)

which is, however, lost for a finite mixing-layer thickness. This leads to
the highly symmetric pattern observed in Figure 13, which suggests that
reverse flow (i.e. IAI > 1) promotes absolute instability as expected,
whereas coflow in the case of the jet or base bleed in the wake has the
opposite effect. Furthermore, it follows that in the wake it is always the
sinuous or von K~trmfin mode that becomes absolutely unstable first,
whereas in the jet it is the varicose or symmetric mode. Lastly, density
variations are seen to have the opposite effect in the wake and the jet.
While lowering the wake density (in air, for instance, by heating) suppresses
absolute instability, it promotes it in the jet. All these three conclusions
have been verified experimentally and are illustrated in the following.

o
~ WAKE JET

-2 -I 0 I A

Fiyure 13 Regions of absolute instability in the (S, A)-plane for the sinuous mode (hori-
zontal hatching) and the varicose mode (vertical hatching) in an inviscid, incompressible
jet/wake bounded by vortex sheets (from Yu & Monkewitz 1988).
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The first example illustrates the effect of base bleed on the global wake
stability. Wood (1964) already had demonstrated that a sufficiently large
base bleed leads to the suppression of von K~irm~n vortex shedding behind
a blunt airfoil trailing edge, as well as to a substantial drag reduction. His
critical bleed coefficient was found by Monkewitz & Nguyen (1987) to 
in good agreement with stability calculations showing that the wake is
everywhere convectively unstable for A > -0.84. By placing strips of
perforated plates (Castro 1971) and screens with different open-area ratios
normal to a uniform stream (/noue 1985), the same effect was demon-
strated. The flow-visualization results of Inoue, obtained at the high Rey-
nolds number ofR = 3000, are reproduced in Figure 14. It is obvious that
between an open-area ratio 2 of 0.37 and 0.39 an abrupt transition takes
place from von Khrm~tn vortex shedding, which is almost indistinguishable
from the case 2 = 0, to no von Khrmhn vortex shedding. This is entirely
consistent with the concept of global instability, where the nonlinear satu-
ration amplitude of the observed oscillations increases abruptly according
to (58) when the control parameter 2 increases beyond a critical value.
We also note here that the distinguishing feature between Figures 14b and
14c is the near-wake instability, for which we reserve the term von K~rm~tn
vortex shedding. As seen in Figure 14c, a convective, sinuous far-wake
instability, which may be mistaken for avon K~rmSn vortex street, appears
in general farther downstream from the "body." However, it is maintained
by external forcing (freestream disturbances, for instance) and hence
depends on its level, and it is not "fed" by a self-excited "wavemaker" in
the near wake.

Experimentally, other measures, such as the heating of the wake (with
air as working fluid), have been found to be effective in suppressing von
K~trmhn vortex shedding (see Table 3). Again, it is possible to relate the
effectiveness of heating to changes in local stability properties, as shown
qualitatively by Figure 13. More detailed stability calculations for an ideal
gas and finite Reynolds number have been carried out by Monkewitz
(1988c) and Yu & Monkewitz (1988); they use the family of velocity profiles
of Monkewitz & Nguyen (1987) and similar temperature profiles, which 
legitimate for a Prandtl number of unity. The resulting boundaries of
absolute instability in the (S, R)-plane are shown in Figure 15 for two
values of the velocity ratio A, as well as for constant and temperature-
dependent viscosity. The first conclusion is that the suppression of absolute
instability by heating is mainly due to density variations, i.e. to the modi-
fication of inertial forces, and not to the modification of viscous forces via
the temperature dependence of the viscosity. More precisely, the change
of wake density subtly affects the interaction between the two shear layers,
which is responsible for the absolute instability in the first place~ and leads
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a )  
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50 100

Figure 15 Absolute-instability boundaries of a heated-cylinder wake in the (S,R)-plane
for constant (--) and temperature-dependent ( .... ) viscosity, and for velocity ratios of 
-- l (O) and A = 1.25 (~) (from Yu & Monkcwitz 1988). Iq: boundary of global 
bility (from Berger & Schumm 1988, with permission). A: absolutely unstable domain. 
convectively unstable domain.

to the well-known Strouhal scaling of the von Kfirmfin shedding based on
jet width.

Recent experimental data of Berger & Schumm (1988) have also been
included in Figure 15. For this purpose, the relationship between the usual
Reynolds number R~°~ and the pertinent local profile Reynolds number
R, based here on the wake half-width and the average between the wake
center-line velocity Uc and U~, has been estimated according to Monkewitz
(1988a). As usual, this step introduces the largest uncertainty into such
comparisons. Nevertheless, it appears that again the measured boundary
of global instability ties well inside the region of local absolute instability,
as suggested by Chomaz et al. (1987, 1988).

OTHER MEASURES AFFECTING VON K~RM,~N VORTEX SHEDDING In an innova-
tive experiment Strykowski (1986) noticed that yon Kfirmfin vortex shed-
ding behind a cylinder could be effectively suppressed by inserting a much
smaller "control cylinder" into the flow, immediately outside the wake
shear layer. Photographic evidence of this phenomenon at approximately
twice the critical Reynolds number both with and without the control
cylinder is presented in Figure 16. The effect has been reproduced in a
numerical experiment by Strykowski & Sreenivasan (1989), but the relation

Figure 14 Flow past a screen at R = 3000 (from Inoue 1985; reprinted with permission of
AIAA). (a) open-area ratio 2 = 0 (fiat plate); (b) 2 = 0.37; (c) 2 = 0.39; (d) 
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510 HUERRE & MONKEWITZ 

Figure 16 Hydrogen-bubble visualization of (a) vortex shedding behind a cylinder at R = 90 
and (b) its suppression by a small “control cylinder” indicated by arrow (from Strykowski 
1986, with permission). 

of the suppression mechanism to absolute and convective instability of the 
modified wake has not yet been established. We can only speculate that 
the asymmetry of the base flow, resulting from the insertion of the control 
cylinder, may lead to a significant change of local stability properties. 

Another method of suppressing the von Karman vortex street has been 
devised by Berger (1964, 1967) and Berger & Schumm (1988). It consists 
of oscillating an oblong cylinder at low amplitude and “high” frequency, 
in this case slightly less than twice the natural von KAnnan frequency. 
Running the experiment above, but very close to, the critical Reynolds 
number, these authors werc able to show that the forcing amplitude can 
be used as a control parameter, much in the same way that Reynolds 
number, base-bleed coefficient, or density ratio can be used. Figure 17 
demonstrates the effect by switching the forcing off at t , ,  which leads to 
an exponential growth and subsequent saturation of the von KArmAn 
mode, and by switching it back on at tSr which leads to the renewed 
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! - 560 Hz f - 560 Hz
!

t2

Figure 17 Suppression of vortex shedding behind an oblong cylinder by high-frequency
forcing during t < tl and t ;> t~ at R = 81 (RG~ = 80) (from Berger & Schumm t988, with
permission).

suppression of natural vortex shedding. No explanation for this effect is
known, and again we can only speculate that it may be related to the
weakening of the vortex street by the higher frequency "transition waves"
as observed by Bloor & Gerrard (1966) in the cylinder wake around
R(°) ,.~ 1000.

6.2 Low-Density Jets

Returning to Figure 13, we reiterate that, as opposed to the wake, the low
density of the jet promotes absolute instability. This has been verified in
detail by the stability calculations of Monkewitz & Sohn (1986, 1988)
for the axisymmetric jet and by Yu & Monkewitz (1988) for the two-
dimensional, inertia-dominated jet. It was also shown that homogeneous
incompressible jets are everywhere convectively unstable. In the axisym-
metric case, the low-density jet starts to develop a region of local absolute
instability below a density ratio S = pj/p~ of 0.72, where pj is the jet exit
density. This first transition to absolute instability is found for zero Mach
number and axisymmetric disturbances on a profile near the nozzle, which
has a vorticity thickness 6o of 8.4% of the jet diameter. Furthermore, the
frequenc3) of local modes with zero group velocity scales as a Strouhal
number based on the jet diameter, with values between 0.25 and 0.5. In
the two-dimensional jet, the corresponding density ratio at which absolute
instability first occurs is St = 0.90.

These findings suggested the possibility of self-sustained global oscil-
lations in low-density jets, exhausting into higher density fluid, and moti-
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512 HUERRE & MONKEWITZ

vated the experiments with an axisymmetric helium-nitrogen jet by Kyle
(1988) (see also Srecnivasan ct al. 1989a, Kyle & Srcenivasan 1989), 
a round, heated air jet by Monkewitz et al. (1988a, 1989a), and with 
two-dimensional hot jet by Yu & Monkewitz 0988). Concentrating on
the axisymmetric case, both groups indeed observed strong, self-excited
oscillations at density ratios below approximately S ~ 0.6 in the He/N2 jet
and S = 0.72 in the hot-air jet. The experiments indicate that the main
requirements for a clean self-excited response are a laminar initial jet shear
layer (i.e. a comparatively low Reynolds number) and a very quiet facility.
At higher Reynolds and Mach numbers, low-density jets have been found
to revert back to the familiar behavior of homogeneous turbulent jets for
reasons that are not yet completely understood. To illustrate the limit-
cycle oscillator nature of the tow-Reynolds-number, low-density jet, we
show in Figure 18a a typical near-field pressure spectrum of the hot jet.
There is little doubt that with its main spectral peak some 30 dB above
the background, this spectrum is qualitatively different from that of the
homogeneous jet in the same figure. To be positive, however, about the
nature of the oscillations--limit-cycle or not--the presence of the (super-
critical) Hopf bifurcation to a global mode must be verified by measuring,
for instance, the saturation amplitude (58) as a function of the control
parameter. This is shown in Figure 18b, with the density ratio S playing
the role of control parameter. The fact that two modes have been identified
is not surprising in light of Section 3’s analysis, and this feature does not
concern us further.

An interesting aspect of self-excited oscillations in low-density jets is
that they have a spectacular effect on the jet spreading, with half-angles
occasionally in excess of 45°. This "by-product" of self-excitation is clearly
outside the scope of the theoretical stability considerations of Section
3, and it was only discovered during the course of the experiments
mentioned above. It is illustrated in Figure 19 for both the helium-nitrogen
jet and the hot-air jet. The similarity of the two jets lends further credence
to the notion that only the density profile is responsible for the self-excited
behavior, as long as buoyancy does not become important close to the
nozzle.

Going one step further, Monkewitz et al. (1989c) have found that the
large jet spreading under self-excited conditions is highly nonaxisymmetric.
They hypothesized that this phenomenon is caused by the Widnall insta-
bility of the primary vortex rings and the subsequent radial expulsion of
"side jets" by vortex induction. These "side jets" are observed to number
between two and six and to roughly coincide with (x, r)-planes that are
more or less equally spaced in the azimuthal direction. They are strikingly
visualized in Figure 20, which shows two jet cross sections that were
produced by placing a laser-sheet perpendicular to the jet axis at x/D = 3
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c~ 70

It II.

I , I , t I
0.5 1

St: fD/Us

10=3

0.4 0.6 ..~ 0.8

Figure 18 (a) Near-field pressure spectrum in a round air jet at (x/D, r/D) = (0.2, 1.0) (from
Monkewitz et al. 1989c). --, hot jet with S =- Pc/P~ - 0.47 and R - 7500; .... , cold jet
(S = 1) of equal dynamic head. (b) Amplitude of the dominant near-field pressure oscillation
at R = 7500, normalized by the jet dynamic head, versus S (from Monkewitz et al.
1989a). --, Equation (58) fitted to the data.

and then taking a high-speed movie of the light scattered from smoke
particles introduced into the jet. Figure 20a captures the passage of a
primary vortex ring, providing a scale for the side jets, while Figure 20b
shows the side jets between the passage of primary vortex rings. This
property of the low-density jet leads us to believe that on a more general
level self-excited oscillations, whether natural or induced by clever manipu-
lation of the flow, may be put to good use, as in many cases they seem to
be associated with optimum mixing.

6.3 Capillary Jets

The last flow to be specifically discussed in this "zoology" of globally
unstable systems is the capillary liquid jet. It serves to show that although
the form of the linear global instability is known, its nonlinear result may
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514 HUEKRE & MONKEWITZ 

b 
Figure 19 (a) Side view of helium jet (with S = 0.14 and R = 1400) by laser-induced 
fluorescence (from Sreenivasan et al. 1989a). (6) Spark-Schlieren of a hot-air jet at S = 0.56 
and R = 7500 (photograph by D. W. Bechert & P. A. Monkewitz). 
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Figure 20 Cross sections of a smoke-seeded hot jet at x / D  = 3, S = 0.44, and R = 7500. 
The photographs, reproduced as negatives, are taken from a high-speed movie (courtesy of 
B. Lehmann & B. Barsikow). 
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be quite unexpected. Leib & Goldstein (1986a,b; see also Lin & Lian 1989, 
Monkewitz et al. 1988b) have demonstrated that on an inviscid basis the 
Rayleigh instability, which leads to the breakup into drops, becomes 
absolute when the Weber number W exceeds 0.32 (i.e. when capillary 
forces become comparable to inertia forces). The Weber number is defined 
as W E  a/(pU2r) ,  where a is the liquid surface tension, p the jet density, 
U the uniform jet velocity, and r the jet radius. To investigate the practical 
effects of absolute instability, Monkewitz et al. (1988b) have carried out 
experiments covering a range of Weber numbers from 0.06 to about 0.5, 
with associated Reynolds numbers (based on y o  and Uo at the orifice) 

For each condition the breakup distance was determined between the 
orifice plate and the location where individual drops formed. It was 
observed that beyond an initial Weber number Wo of about 0.3, the 
breakup distance decreased dramatically and became zero around 
Wo w 0.5 (with Ro w 180). Visually, at this critical Weber number the jet 
goes abruptly from breaking up downstream of the orifice to dripping, 
without an appreciable change in mean flow rate. The tentative explanation 
for this behavior is that once the region of absolute instability adjacent to 
the orifice becomes sufficiently long, a global mode starts growing in time. 
The resulting finite-amplitude oscillations close to the nozzle presumably 
then lead to the wetting of the orifice plate and to the formation of large 
drops. Hence, it may be that the dripping of a faucet is in a broad sense 
related to von Karman vortex shedding. 

betw‘;eenapproximately 500 and 140. .- 

7. FURTHER CONSIDERATIONS 
7.1 Experimental Diugnos t ics 
A topic of some importance is how to recognize global instability in the 
laboratory or in a numerical simulation, as the information used in Section 
3 for its definition is not generally available. We again emphasize that in 
this context only the global properties are meaningful, since local absolute 
instability, which is the property of a fictitious parallel mean flow, cannot 
in general be directly observed in a spatially developing system. The type 
of experiments that are suitable for the identification of self-excited global 
modes can immediately be divided into two classes. The first contains all 
the “easy” experiments, which address the steady-periodic behavior of the 
system and in general yield only supporting evidence for the existence of 
self-excitation. The second class naturally contains the “hard” experi- 
mcnts, which are concerned with the transient bchavior of the system as 
well and yield conclusive proof of self-excitation. A characteristic in 
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LOCAL AND GLOBAL INSTABILITIES 517 

common is the requirement of extremely low uncontrolled external noise 
so as not to obscure the bifurcation to global modes. 

Typical experiments of the first kind are given approximately in ascend- 
ing order of the strength of the evidence that they can provide. At the very 
bottom we probably have to place single-point spectral data. Despite the 
rather convincing look of Figure 18a, for instance, it is always pos- 
sible that a clean spatial instability, especially in a laminar shear flow, 
can produce an equally peaky spectrum. Next, experiments with steady- 
periodic forcing should be considered. They can be designed to detect 
frequency “lock-in’’ phenomena, which point to a nonlinear oscillator 
behavior, by sweeping the forcing frequency past a suspected global-mode 
frequency or its rational multiples (see, for instance, Sreenivasan et al. 
1989b). Another design involves the measurement of the system response 
as a function of forcing amplitude at the suspected global-mode frequency. 
In the case of a purely convectively unstable system, one expects for 
small enough forcing a linear relationship between forcing and response 
amplitude (Le. the behavior of an “amplifier”), whereas for a self-excited 
system sufficiently far from critical the saturation amplitude of the limit 
cycle is insensitive to low-level forcing. This is easily verified with the 
forced Landau equation (47), which yields lBl,&?) z lBls&3 = 0) 
+/?/[21B1:at(P = O ) ]  when P << IBl:at(/? = 0). Around critical conditions, 
however, the dependence of 1 B(,,,  on forcing becomes more pronounced. 
A typical example of such an experiment is shown in Figure 21. Finally, 
the measurement of the saturation amplitude as a function of a control 
parameter, as in Figure 18b, generally constitutes strong evidence for the 
presence of a supercritical Hopf bifurcation. In the case of a subcritical 
bifurcation the situation becomes far more complicated, however, but we 
are not aware of any such example. 

ope I 

I s.0.22 

i 
Excitotion volts Irmsl 

Figure 21 The response of a He/N,jet to excitation at S = 0.22 and difierent Mach numbers 
for a self-excited case (top curve) and two globally stable cases (bottom two curves) (from 
Sreenivasan et al. 1989a, with permission). 
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518 HUERRE & MONKEWITZ 

The second class of “hard” experiments is typified by the transient 
experiment of Mathis et al. (1984), Strykowski (1986), and others. It 
involves following a global instability in time from its inception, through 
its small-amplitude linear stage, to saturation. The information obtained 
in this way at any given point can then be used to evaluate all the complex 
coefficients of the Landau equation and to positively identify a bifurcation. 
We may add here that, in order to avoid any misinterpretation, it should 
be verified that the same Landau equation is satisfied at every point in 
space. 

7.2 Implications for Flow Control 
The concept of global instability is likely to be fruitful in the context of 
flow “modification” and “control.” Here we reserve the term “control” 
for closed-loop feedback control, while any other “fiddling” with the 
flow is referred to as flow “modification.” The study of local stability 
properties-in particular, absolute instability-thereby represents a 
simple and quick, albeit not foolproof, means of evaluating the global 
characteristics. 

When considering control and flow modification, we must distinguish 
between two diametrically opposed objectives, which call for very different 
strategies. The first (and possibly more common) is the suppression, to the 
greatest extent possible, of all oscillations. The second, equally important 
objective is the stimulation of a global instability for the purpose of optimal 
mixing, for instance. This latter task can in general be accomplished very 
efficiently by a simple, single sensor-single actuator feedback control, as 
demonstrated experimentally in the homogeneous round jet by Wehrmann 
(1957) and Reisenthel(1988). 

By contrast, the suppression of global instabilities by single sensor- 
single actuator feedback control in the wake of an oblong cylinder was 
discovered by Berger (1964, 1967) to be difficult and only possible very 
close to the natural critical Reynolds number. Both of these situations 
have been analyzed by Monkewitz (1989a), using the generic Ginzburg- 
Landau model of Sections 2 , 3 ,  and 5.  The analysis qualitatively reproduces 
all the experimental findings and in addition yields the following simple 
explanation for the success and failure of single sensor-single actuator 
feedback control: To induce global instability, only a single, and in most 
applications unspecified, global mode has to be destabilized. To suppress 
global instability, on the other hand, all global modes must be attenuated. 
It is clear that in the latter situation, one sensor is in general not sufficient 
to handle multiple global modes, which often have very closely spaced 
frequencies [O(E) apart in the formulation of Section 3 ,  Equation (46)]. 
Hence, while the control may be designed to attenuate one mode, it will 
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in most cases destabilize another, thereby defeating its purpose.
Conversely, we speculate that in all examples in which such a simple
feedback control works (see, for example, Ffowcs-Williams 1989), there
was only a single, self-excited global mode to control, with all others
strongly damped. Except under these special circumstances, it therefore
appears that the most promising strategy to suppress global instability
is to modify the flow system so as to eliminate all regions of absolute
instability.

7.3 Relevance to Chaotic Dynamics

The classification scheme outlined in the introduction and in Section 3 is
particularly pertinent to the study of deterministic chaos in open flows.
We recall that in globally unstable flows, a Hopf bifurcation takes place
whereby the entire spatial domain is in a limit-cycle state at a natural
frequency ~%. Close to the bifurcation point, the temporal behavior is
fully specified by the Landau equation (47). All relevant properties of the
unsteady flow field can be characterized by a time series at a single point
in space, as is used for closed flows in small-aspect-ratio geometries (Ray-
leigh-B6nard convection, Taylor-Couette flow). Furthermore the finite-
amplitude periodic state reached by globally unstable flows provides a
benchmark with which other possible states (tori, strange attractors) can
be compared as a control parameter is varied. For instance, if time-
harmonic forcing is applied, locked-in regions (Arnold tongues) can 
mapped and universal transitions can be identified for particular values of
the ratio between the excitation frequency and the natural frequency. Such
a program has been carried out experimentally by Olinger & Sreenivasan
(1988) for the wake behind an oscillating cylinder and by Sreenivasan 
al. (1989a) for a periodically excited helium jet. Numerical simulations 
a forced bluff-body wake performed by Karniadakis & Triantafyllou
(1989) also reveal the presence of locked-in regions as well as low-dimen-
sional chaotic attractors. In other situations, additional natural frequencies
can be introduced by the modes of vibration of the cylinder. The coupling
between hydrodynamic and elastic modes may also lead to low-dimen-
sional chaos, as shown by Sreenivasan (1985) and Van Atta & Gharib
(1987). We conclude that globally unstable flows are readily amenable 
a low-dimensional dynamical-systems approach of the kind used for small-
aspect-ratio closed hydrodynamical systems. Complicated spatio-temporal
patterns are also possible, as shown by Van Attaet al. (1988).

The dynamical regimes of globally stable flows that are nonetheless
locally convectively unstable cannot be as easily characterized. Extreme
sensitivity to random external noise makes it difficult to obtain pure limit-
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cycle states even when the flow is forced monochromatically. As a result,
when the flow is pushed into what appears to be a low-dimensional "chaot-
ic" state, it is often impossible to discriminate between intrinsic chaos and
amplification of external random noise (Huerre 1987). To explore other
possible approaches; Deissler (1985, 1987a) chose to investigate numerical
solutions of the Ginzburg-Landau model with a stabilizing cubic nonlinear
term. Under broadband-forcing conditions, the external noise was found
to be selectively amplified and spatially growing waves were generated
downstream of the source at the frequency of the maximum spatial ampli-
fication rate. Farther downstream, however, the nonlinear wave train
became modulationally unstable to sidcbands. This secondary instability
triggered a breakup of the primary finite-amplitude wave into a turbulent
state. Random fluctuations in the spatial location of the breakup point
were shown to be responsible for intermittency. Since, in the absence of
external fluctuations, no spatio-temporal oscillations could be detected,
Deissler appropriately coined the term noise-sustained structures to
describe this phenomenon. Similar dynamics has been identified by Brand
& Deissler (1989) in the Kuramoto-Sivashinsky equation. A distinctly
different spatio-temporal behavior arises in Ginzburg-Landau models dis-
playing a subcritical bifurcation (destabilizing cubic nonlinearity). 
demonstrated by Deissler (1987c), the spatially growing waves generated
by random noise produce turbulent spots and slugs that are qualitatively
similar to those observed in channel flow and pipe flow. The reader is
referred to Deissler (I 989) for a survey of recent work in this area.

Few convectively unstable flows have been studied experimentally from
a nonlinear dynamical-systems point of view. Experiments on thin airfoil
wakes (Aref et al. 1987, Williams-Stuber & Gharib 1989) reveal a wealth
of possible flow patterns when several incommensurate frequencies are
introduced externally. Bonetti (1988) and Bonetti & Boon (1989) 
recently identified low-dimensional chaotic attractors in excited jets with
fully developed pipe flow at the nozzle exit plane. The transition to chaos
was in this case related to the breakdown of the helical structure generated
immediately downstream of the nozzle.

It remains to be established whether the usual statistical measures of
chaos, such as Lyapunov exponents, remain applicable in convectively
unstable flows. As noticed by Deissler & Kaneko (1987), Lyapunov
exponents generated at a fixed spatial location are always negative, a fact
presumably related to the negative absolute growth rates prevailing in
convectively unstable flows. Deissler & Kaneko propose instead to intro-
duce a velocity-dependent Lyapunov exponent calculated in a frame of
reference moving at a constant speed. A convectively unstable flow is then
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determined to be chaotic when the maximum value of the Lyapunov
exponent over all frame speeds is positive.

7.4 Relation to Global Instability in Closed Flows

This review has been centered around spatially developing open flows of
infinite streamwise extent. A related question may then be asked: How do
local/global and absolute/convectivc instability concepts carry ovcr to
flows in finite geometries that, in their basic state, are spatially homo-
geneous? In the last five years, important advances have been made in
our understanding of traveling-wave states in closed flows, the primary
objective being the dcscriptiort of spatio-temporal covaplexity in convecting
binary fluid mixtures. The most successful model appears to be that pro-
posed by Cross (1986, 1988) for finite systems exhibiting an instability
to an oscillating spatially periodic state with x ~ -x symmetry. Cross
considers two coupled Ginzburg-Landau equations with constant
coefficients governing the amplitudes ~kL and ~R of left- and right-moving
waves (see also Coullet et al. 1985). As a control parameter R is varied,
the linearized system undergoes successive transitions from stable to con-
vectively unstable to absolutely unstable, as sketched in Figures lJ~9,h.
Numerical simulations reveal that in convectively unstable situations (Fig-
ure 1~,), the finite-size nonlinear system admits "confined traveling-wave
states" that are restricted to one side of the spatial domain, namely right-
moving waves on the right side or left-moving waves on the left side. In
contrast with open infinite systems, global modes can therefore exist in
finite geometries even though the medium is convectively unstable every-
where. In a subrange of control parameters, more complicated "blinking
states" are also possible, which consist of left- and right-moving traveling
waves periodically alternating between either side of the cell. As the basic
state becomes absolutely unstable everywhere (Figure lh) there is a distinct
transition to a full-cell nonlinear saturated state composed of counter-
propagating traveling waves. Thus, the occurrence of absolute instability
in this class of closed flows signals the onset of a global mode occupying
the full length of the system. It is striking that the detailed sequence of
nonlinear states predicted by Cross (1988) has been confirmed by many
careful experimental studies of binary fluid convection. In particular, con-
fined traveling-wave states have been observed and documented by Hein-
rich et al. (1987) and Moses et al. (1987), blinking states by Fineberg et 
(1988) and Kolodner & Surko (1988), and full-cell saturated nonlinear
traveling-wave states by Walden et al. (1985) and Moses & Steinberg
(1986). Recent experimental progress has been extensively discussed 
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Kolodncr ct al. (1989) and Steinberg et al. (1989). Not all global or confined
states can be explained in terms of the local nature of the instability in
open flows and closed flows: Recent experiments by Bensimon et al. (1989)
in binary fluid convection in an annulus do show the existence of stable
confined states that cannot be related to local instability properties.

7.5 Pattern Propagation Fronts

The theoretical considerations outlined in this review bear a close relation-
ship with the determination of the front propagation velocity of a pattern
into an unstable basic state. When a localized perturbation is initiated
in a spatially uniform unstable state, a linear wave packet develops, as
sketched in Figure 1. In the nonlinear regime, a pattern is then generated
that spreads out into the unstable state. The front separating the nonlinear
pattern from the unstable basic state propagates at a well-defined velocity
VF, and a particular complex wave number kv is selected by the dynamics
immediately behind the front. Dee & Langer (1983), Ben-Jacob et al.
(1985), and Shraiman & Bensimon (1985) have proposed a selection prin-
ciple for Vv and kv that is based on linear marginal-stability arguments.
More specifically, the velocity Vv and the wave number kv are such that,
in a reference frame moving with the front, perturbations are neutrally
stable. From Figure 1, it is then immediately obvious that the fronts
coincide with the specific rays x/t = Vv where the growth rate
~r =_ co,(k,)-(x/t)k,~ is identically zero. Thus, in the notation of this review,
the Dee-Langer criterion for VF and kF can bc stated as

O" ~ (Di(kF)- VFkF, i = O.

(61)

(62)

For instance, application of this criterion to the linearized Ginzburg-
Landau equation (8) yields the front velocities

Vv ____ mk + [Ogkk[ ~-- 2CORi(R Rc)~]1/2.
~ 09kk~

(63)

These values correspond to the slopes of the rays delineating the extent of
the wave packet in Figure 1. They have recently been derived by Niklas et
al. (1989). The predictions of the Dee-Langer criterion have been verified
experimentally (Ahlers & Cannell 1983) and numerically (Luecke et 
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1984, 1985) for the propagation front separating a pattern of Taylor
vortices from the ambient unstable Couette flow. Excellent agreement has
been obtained by Fineberg & Steinberg (1987) in the case of a convection
roll pattern invading the conduction state in Rayleigh-B6nard cells. In
both cases, the particular version of the Ginzburg-Landau equation associ-
ated with a stationary bifurcation was chosen to predict the front velocity.
More recent theoretical work by Ben-Jacob et al. (1985) and Van Saarlos
(1988, 1989) indicates that the linear marginal-stability criterion only holds
in systems undergoing a supercritical bifurcation with a continuous tran-
sition to a finite-amplitude state. When the bifurcation is subcritical, pat-
tern propagation into the unstable state follows a nonlinear marginal-
stability criterion.
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APPENDIX: SUMMARY OF RESULTS FOR
DIFFERENT TYPES OF FLOW

Glossary of acronyms and parameters
LS: linear stability analysis
LE: laboratory experiment
NE: numerical experiment
CI: convective instability
AI: absolute instability
GLI: global instability
A: velocity ratio
S: density ratio
R: Reynolds number
M: Mach number
F: Froude number
W: Weber number
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