
Chapter 11

Shock Waves

Here we shall follow closely the pellucid discussion in chapter 2 of the book by G. Whitham,
beginning with the simplest possible PDE,

ρt + c0 ρx = 0 . (11.1)

The solution to this equation is an arbitrary right-moving wave (assuming c0 > 0), with
profile

ρ(x, t) = f(x − c0t) , (11.2)

where the initial conditions on eqn. 11.1 are ρ(x, t = 0) = f(x). Nothing to see here, so
move along.

11.1 Nonlinear Continuity Equation

The simplest nonlinear PDE is a generalization of eqn. 11.1,

ρt + c(ρ) ρx = 0 . (11.3)

This equation arises in a number of contexts. One example comes from the theory of
vehicular traffic flow along a single lane roadway. Starting from the continuity equation,

ρt + jx = 0 , (11.4)

one posits a constitutive relation j = j(ρ), in which case c(ρ) = j′(ρ). If the individual
vehicles move with a velocity v = v(ρ), then

j(ρ) = ρ v(ρ) ⇒ c(ρ) = v(ρ) + ρ v′(ρ) . (11.5)

It is natural to assume a form v(ρ) = c0 (1 − aρ), so that at low densities one has v ≈ c0,
with v(ρ) decreasing monotonically to v = 0 at a critical density ρ = a−1, presumably
corresponding to bumper-to-bumper traffic. The current j(ρ) then takes the form of an
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2 CHAPTER 11. SHOCK WAVES

inverted parabola. Note the difference between the individual vehicle velocity v(ρ) and
what turns out to be the group velocity of a traffic wave, c(ρ). For v(ρ) = c0 (1 − aρ), one
has c(ρ) = c0 (1− 2aρ), which is negative for ρ ∈

[

1
2a−1, a−1

]

. For vehicular traffic, we have
c′(ρ) = j′′(ρ) < 0 but in general j(ρ) and thus c(ρ) can be taken to be arbitrary.

Another example comes from the study of chromatography, which refers to the spatial
separation of components in a mixture which is forced to flow through an immobile absorbing
‘bed’. Let ρ(x, t) denote the density of the desired component in the fluid phase and n(x, t)
be its density in the solid phase. Then continuity requires

nt + ρt + V ρx = 0 , (11.6)

where V is the velocity of the flow, which is assumed constant. The net rate at which the
component is deposited from the fluid onto the solid is given by an equation of the form

nt = F (n, ρ) . (11.7)

In equilibrium, we then have F (n, ρ) = 0, which may in principle be inverted to yield
n = neq(ρ). If we assume that the local deposition processes run to equilibrium on fast time
scales, then we may substitute n(x, t) ≈ neq

(

ρ(x, t)
)

into eqn. 11.6 and obtain

ρt + c(ρ) ρx = 0 , c(ρ) =
V

1 + n′
eq(ρ)

. (11.8)

We solve eqn. 11.3 using the method of characteristics. Suppose we have the solution
ρ = ρ(x, t). Consider then the family of curves obeying the ODE

dx

dt
= c

(

ρ(x, t)
)

. (11.9)

This is a family of curves, rather than a single curve, because it is parameterized by the
initial condition x(0) ≡ ζ. Now along any one of these curves we must have

dρ

dt
=

∂ρ

∂t
+

∂ρ

∂x

dx

dt
=

∂ρ

∂t
+ c(ρ)

∂ρ

∂x
= 0 . (11.10)

Thus, ρ(x, t) is a constant along each of these curves, which are called characteristics. For
eqn. 11.3, the family of characteristics is a set of straight lines1,

xζ(t) = ζ + c(ρ) t . (11.11)

The initial conditions for the function ρ(x, t) are

ρ(x = ζ, t = 0) = f(ζ) , (11.12)

1The existence of straight line characteristics is a special feature of the equation ρt+c(ρ) ρx = 0. For more
general hyperbolic first order PDEs to which the method of characteristics may be applied, the characteristics
are curves. See the discussion in the Appendix.
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where f(ζ) is arbitrary. Thus, in the (x, t) plane, if the characteristic curve x(t) intersects
the line t = 0 at x = ζ, then its slope is constant and equal to c

(

f(ζ)
)

. We then define

g(ζ) ≡ c
(

f(ζ)
)

. (11.13)

This is a known function, computed from c(ρ) and f(ζ) = ρ(x = ζ, t = 0). The equation of

the characteristic xζ(t) is then

xζ(t) = ζ + g(ζ) t . (11.14)

Do not confuse the subscript in xζ(t) for a derivative!

To find ρ(x, t), we follow this prescription:

(i) Given any point in the (x, t) plane, we find the characteristic xζ(t) on which it lies.
This means we invert the equation x = ζ + g(ζ) t to find ζ(x, t).

(ii) The value of ρ(x, t) is then ρ = f
(

ζ(x, t)
)

.

(iii) This procedure yields a unique value for ρ(x, t) provided the characteristics do not
cross, i.e. provided that there is a unique ζ such that x = ζ + g(ζ) t. If the charac-
teristics do cross, then ρ(x, t) is either multi-valued , or else the method has otherwise
broken down. As we shall see, the crossing of characteristics, under the conditions
of single-valuedness for ρ(x, t), means that a shock has developed, and that ρ(x, t) is
discontinuous.

We can verify that this procedure yields a solution to the original PDE of eqn. 11.3 in the
following manner. Suppose we invert

x = ζ + g(ζ) t =⇒ ζ = ζ(x, t) . (11.15)

We then have

ρ(x, t) = f
(

ζ(x, t)
)

=⇒











ρt = f ′(ζ) ζt

ρx = f ′(ζ) ζx

(11.16)

To find ζt and ζx, we invoke x = ζ + g(ζ) t, hence

0 =
∂

∂t

[

ζ + g(ζ) t − x
]

= ζt + ζt g′(ζ) t + g(ζ) (11.17)

0 =
∂

∂x

[

ζ + g(ζ) t − x
]

= ζx + ζx g′(ζ) t − 1 , (11.18)

from which we conclude

ρt = − f ′(ζ) g(ζ)

1 + g′(ζ) t
(11.19)

ρx =
f ′(ζ)

1 + g′(ζ) t
. (11.20)
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Figure 11.1: Forward and backward breaking waves for the nonlinear continuity equation
ρt + c(ρ) ρx = 0, with c(ρ) = 1 + ρ (top panels) and c(ρ) = 2 − ρ (bottom panels). The
initial conditions are ρ(x, t = 0) = 1/(1 + x2), corresponding to a break time of tB = 8

3
√

3
.

Successive ρ(x, t) curves are plotted for t = 0 (thick blue), t = 1
2tB (dark blue), t = tB (dark

green), t = 3
2 tB (orange), and t = 2tB (dark red).

Thus, ρt + c(ρ) ρx = 0, since c(ρ) = g(ζ).

As any wave disturbance propagates, different values of ρ propagate with their own veloc-
ities. Thus, the solution ρ(x, t) can be constructed by splitting the curve ρ(x, t = 0) into
level sets of constant ρ, and then shifting each such set by a distance c(ρ) t. For c(ρ) = c0,
the entire curve is shifted uniformly. When c(ρ) varies, different level sets are shifted by
different amounts.

We see that ρx diverges when 1 + g′(ζ) t = 0. At this time, the wave is said to break . The
break time tB is defined to be the smallest value of t for which ρx = ∞ anywhere. Thus,

tB = min
ζ

g′(ζ)<0

(

− 1

g′(ζ)

)

≡ − 1

g′(ζB)
. (11.21)

Breaking can only occur when g′(ζ) < 0, and differentiating g(ζ) = c
(

f(ζ)
)

, we have that
g′(ζ) = c′(f) f ′(ζ). We then conclude

c′ < 0 =⇒ need f ′ > 0 to break

c′ > 0 =⇒ need f ′ < 0 to break .

Thus, if ρ(x = ζ, t = 0) = f(ζ) has a hump profile, then the wave breaks forward (i.e. in the
direction of its motion) if c′ > 0 and backward (i.e. opposite to the direction of its motion)
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Figure 11.2: Crossing of characteristics of the nonlinear continuity equation ρt+c(ρ) ρx = 0,
with c(ρ) = 1 + ρ and ρ(x, t = 0) = 1/(1 + x2). Within the green hatched region of the
(x, t) plane, the characteristics cross, and the function ρ(x, t) is apparently multivalued.

if c′ < 0. In fig. 11.1 we sketch the breaking of a wave with ρ(x, t = 0) = 1/(1 + x2) for
the cases c = 1 + ρ and c = 2− ρ. Note that it is possible for different regions of a wave to
break at different times, if, say, it has multiple humps.

Wave breaking occurs when neighboring characteristic cross. We can see this by comparing
two neighboring characteristics,

xζ(t) = ζ + g(ζ) t (11.22)

xζ+δζ(t) = ζ + δζ + g(ζ + δζ) t

= ζ + g(ζ) t +
(

1 + g′(ζ) t
)

δζ + . . . . (11.23)

For these characteristics to cross, we demand

xζ(t) = xζ+δζ(t) =⇒ t = − 1

g′(ζ)
. (11.24)

Usually, in most physical settings, the function ρ(x, t) is single-valued. In such cases, when
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Figure 11.3: Crossing of characteristics of the nonlinear continuity equation ρt+c(ρ) ρx = 0,

with c(ρ) = 1 + ρ and ρ(x, t = 0) =
[

x/(1 + x2)
]2

. The wave now breaks in two places and
is multivalued in both hatched regions. The left hump is the first to break.

the wave breaks, the multivalued solution ceases to be applicable2. Generally speaking,
this means that some important physics has been left out. For example, if we neglect
viscosity η and thermal conductivity κ, then the equations of gas dynamics have breaking
wave solutions similar to those just discussed. When the gradients are steep – just before
breaking – the effects of η and κ are no longer negligible, even if these parameters are small.
This is because these parameters enter into the coefficients of higher derivative terms in
the governing PDEs, and even if they are small their effect is magnified in the presence
of steep gradients. In mathematical parlance, they constitute singular perturbations. The
shock wave is then a thin region in which η and κ are crucially important, and the flow
changes rapidly throughout this region. If one is not interested in this small scale physics,
the shock region can be approximated as being infinitely thin, i.e. as a discontinuity in the
inviscid limit of the theory. What remains is a set of shock conditions which govern the
discontinuities of various quantities across the shocks.

2This is even true for water waves, where one might think that a multivalued height function h(x, t) is
physically possible.
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Figure 11.4: Current conservation in the shock frame yields the shock velocity, vs = ∆j/∆ρ.

11.2 Shocks

We now show that a solution to eqn. 11.3 exists which is single valued for almost all (x, t),
i.e. everywhere with the exception of a set of zero measure, but which has a discontinuity
along a curve x = xs(t). This discontinuity is the shock wave.

The velocity of the shock is determined by mass conservation, and is most easily obtained in
the frame of the shock. The situation is as depicted in fig. 11.4. If the density and current
are (ρ

−
, j

−
) to the left of the shock and (ρ+ , j+) to the right of the shock, and if the shock

moves with velocity vs, then making a Galilean transformation to the frame of the shock,
the densities do not change but the currents transform as j → j′ = j − ρv. Thus, in the
frame where the shock is stationary, the current on the left and right are j

±
= j

±
− ρ

±
vs.

Current conservation then requires

vs =
j+ − j

−

ρ+ − ρ
−

=
∆j

∆ρ
. (11.25)

The special case of quadratic j(ρ) bears mention. Suppose

j(ρ) = αρ2 + βρ + γ . (11.26)

Then c = 2αρ + β and

vs = α(ρ+ + ρ
−
) + β

= 1
2

(

c+ + c
−

)

. (11.27)

So for quadratic j(ρ), the shock velocity is simply the average of the flow velocity on either
side of the shock.

Consider, for example, a model with j(ρ) = 2ρ(1 − ρ), for which c(ρ) = 2 − 4ρ. Consider
an initial condition ρ(x = ζ, t = 0) = f(ζ) = 3

16 + 1
8 Θ(ζ), so initially ρ = ρ1 = 3

16 for
x < 0 and ρ = ρ2 = 5

16 for x > 0. The lower density part moves faster, so in order to
avoid multiple-valuedness, a shock must propagate. We find c

−
= 5

4 and c+ = 3
4 . The shock

velocity is then vs = 1. Ths situation is depicted in fig. 11.5.
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Figure 11.5: A resulting shock wave arising from c− = 5
4 and c+ = 3

4 . With no shock fitting,
there is a region of (x, t) where the characteristics cross, shown as the hatched region on
the left. With the shock, the solution remains single valued. A quadratic behavior of j(ρ)
is assumed, leading to vs = 1

2(c+ + c−) = 1.

11.3 Internal Shock Structure

At this point, our model of a shock is a discontinuity which propagates with a finite velocity.
This may be less problematic than a multivalued solution, but it is nevertheless unphysical.
We should at least understand how the discontinuity is resolved in a more complete model.
To this end, consider a model where

j = J(ρ, ρx) = J(ρ) − νρx . (11.28)

The J(ρ) term contains a nonlinearity which leads to steepening and broadening of regions
where dc

dx > 0 and dc
dx < 0, respectively. The second term, −νρx, is due to diffusion, and

recapitulates Fick’s law , which says that a diffusion current flows in such a way as to reduce
gradients. The continuity equation then reads

ρt + c(ρ) ρx = νρxx , (11.29)

with c(ρ) = J ′(ρ). Even if ν is small, its importance is enhanced in regions where |ρx| is
large, and indeed −νρx dominates over J(ρ) in such regions. Elsewhere, if ν is small, it
may be neglected, or treated perturbatively.

As we did in our study of front propagation, we seek a solution of the form

ρ(x, t) = ρ(ξ) ≡ ρ(x − vst) ; ξ = x − vst . (11.30)

Thus, ρt = −vs ρx and ρx = ρξ, leading to

−vs ρξ + c(ρ) ρξ = νρξξ . (11.31)

Integrating once, we have
J(ρ) − vs ρ + A = ν ρξ , (11.32)
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where A is a constant. Integrating a second time, we have

ξ − ξ0 = ν

ρ
∫

ρ0

dρ′

J(ρ′) − vs ρ′ + A
. (11.33)

Suppose ρ interpolates between the values ρ1 and ρ2. Then we must have

J(ρ1) − vs ρ1 + A = 0 (11.34)

J(ρ2) − vs ρ2 + A = 0 , (11.35)

which in turn requires

vs =
J2 − J1

ρ2 − ρ1

, (11.36)

where J1,2 = J(ρ1,2), exactly as before! We also conclude that the constant A must be

A =
ρ1J2 − ρ2J1

ρ2 − ρ1

. (11.37)

11.3.1 Quadratic J(ρ)

For the special case where J(ρ) is quadratic, with J(ρ) = αρ2 + βρ + γ, we may write

J(ρ) − vs ρ + A = α(ρ − ρ2)(ρ − ρ1) . (11.38)

We then have vs = α(ρ1 + ρ2) + β, as well as A = αρ1ρ2 − γ. The moving front solution
then obeys

dξ =
ν dρ

α(ρ − ρ2)(ρ − ρ1)
=

ν

α(ρ2 − ρ1)
d ln

(

ρ2 − ρ

ρ − ρ1

)

, (11.39)

which is integrated to yield

ρ(x, t) =
ρ2 + ρ1 exp

[

α(ρ2 − ρ1)
(

x − vst
)

/ν
]

1 + exp
[

α(ρ2 − ρ1)
(

x − vst
)

/ν
] . (11.40)

We consider the case α > 0 and ρ1 < ρ2. Then ρ(±∞, t) = ρ1,2. Note that

ρ(x, t) =

{

ρ1 if x − vst ≫ δ

ρ2 if x − vst ≪ −δ ,
(11.41)

where
δ =

ν

α (ρ2 − ρ1)
(11.42)

is the thickness of the shock region. In the limit ν → 0, the shock is discontinuous. All that
remains is the shock condition,

vs = α(ρ1 + ρ2) + β = 1
2

(

c1 + c2

)

. (11.43)

We stress that we have limited our attention here to the case where J(ρ) is quadratic. It
is worth remarking that for weak shocks where ∆ρ = ρ+ − ρ

−
is small, we can expand J(ρ)

about the average 1
2(ρ+ + ρ

−
), in which case we find vs = 1

2(c+ + c
−
) + O

(

(∆ρ)2
)

.
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11.4 Shock Fitting

When we neglect diffusion currents, we have j = J . We now consider how to fit discontin-
uous shocks satisfying

vs =
J+ − J

−

ρ+ − ρ
−

(11.44)

into the continuous solution of eqn. 11.3, which are described by

x = ζ + g(ζ) t (11.45)

ρ = f(ζ) , (11.46)

with g(ζ) = c
(

f(ζ)
)

, such that the multivalued parts of the continuous solution are elim-
inated and replaced with the shock discontinuity. The guiding principle here is number
conservation:

d

dt

∞
∫

−∞

dx ρ(x, t) = 0 . (11.47)

We’ll first learn how do fit shocks when J(ρ) is quadratic, with J(ρ) = αρ2 + βρ + γ. We’ll
assume α > 0 for the sake of definiteness.

11.4.1 An Important Caveat

Let’s multiply the continuity equation ρt + c(ρ) ρx = 0 by c′(ρ). Thus results in

ct + c cx = 0 . (11.48)

If we define q = 1
2c2, then this takes the form of a continuity equation:

ct + qx = 0 . (11.49)

Now consider a shock wave. Invoking eqn. 11.25, we would find, mutatis mutandis, a shock
velocity

us =
q+ − q

−

c+ − c
−

= 1
2(c+ + c

−
) . (11.50)

This agrees with the velocity vs = ∆j/∆ρ only when j(ρ) is quadratic. Something is wrong
– there cannot be two velocities for the same shock.

The problem is that eqn. 11.48 is not valid across the shock and cannot be used to determine
the shock velocity. There is no conservation law for c as there is for ρ. One way we can
appreciate the difference is to add diffusion into the mix. Multiplying eqn. 11.29 by c′(ρ),
and invoking cxx = c′(ρ) ρxx + c′′(ρ) ρ2

x, we obtain

ct + c cx = νcxx − νc′′(ρ) ρ2
x . (11.51)
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We now see explicitly how nonzero c′′(ρ) leads to a different term on the RHS. When
c′′(ρ) = 0, the above equation is universal, independent of the coefficients in the quadratic
J(ρ), and is known as Burgers’ equation,

ct + c cx = νcxx . (11.52)

Later on we shall see how this nonlinear PDE may be linearized, and how we can explicitly
solve for shock behavior, including the merging of shocks.

11.4.2 Recipe for shock fitting (J ′′′(ρ) = 0)

Number conservation means that when we replace the multivalued solution by the discon-
tinuous one, the area under the curve must remain the same. If J(ρ) is quadratic, then we
can base our analysis on the equation ct + c cx = 0, since it gives the correct shock velocity
vs = 1

2(c+ + c
−
). We then may then follow the following rules:

(i) Sketch g(ζ) = c
(

f(ζ)
)

.

(ii) Draw a straight line connecting two points on this curve at ζ
−

and ζ+ which obeys
the equal area law, i.e.

1
2 (ζ+ − ζ

−
)
(

g(ζ+) + g(ζ
−
)
)

=

ζ+
∫

ζ
−

dζ g(ζ) . (11.53)

(iii) This line evolves into the shock front after a time t such that

xs(t) = ζ
−

+ g(ζ
−
) t = ζ+ + g(ζ+) t . (11.54)

Thus,

t = − ζ+ − ζ
−

g(ζ+) − g(ζ
−
)

. (11.55)

Alternatively, we can fix t and solve for ζ
±
. See fig. 11.6 for a graphical description.

(iv) The position of the shock at this time is x = xs(t). The strength of the shock is
∆c = g(ζ

−
) − g(ζ+). Since J(ρ) = αρ2 + βρ + γ, we have c(ρ) = 2αρ + β and hence

the density discontinuity at the shock is ∆ρ = ∆c/2α.

(v) The break time, when the shock first forms, is given by finding the steepest chord
satisfying the equal area law. Such a chord is tangent to g(ζ) and hence corresponds
to zero net area. The break time is

tB = min
ζ

g′(ζ)>0

(

− 1

g′(ζ)

)

≡ − 1

g(ζB)
. (11.56)

(vi) If g(∞) = g(−∞), the shock strength vanishes as t → ∞. If g(−∞) > g(+∞) then
asymptotically the shock strength approaches ∆g = g(−∞) − g(+∞).
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Figure 11.6: Shock fitting for quadratic J(ρ).

11.4.3 Example problem

Suppose the c(ρ) and ρ(x, t = 0) are such that the initial profile for c(x, t = 0) is

c(x, 0) = c0 cos
(πx

2ℓ

)

Θ
(

ℓ − |x|
)

, (11.57)

where Θ(s) is the step function, which vanishes identically for negative values of its argu-
ment. Thus, c(x, 0) = 0 for |x| ≥ ℓ.

(a) Find the time tB at which the wave breaks and a shock front develops. Find the position

of the shock xs(tB) at the moment it forms.

Solution : Breaking first occurs at time

tB = min
x

−1

c′(x, 0)
. (11.58)

Thus, we look for the maximum negative slope in g(x) ≡ c(x, 0), which occurs at x = ℓ,
where c′(ℓ, 0) = −πc0/2ℓ. Therefore,

tB =
2ℓ

πc0

, xB = ℓ . (11.59)

(b) Use the shock-fitting equations to derive ζ±(t).

Solution : The shock fitting equations are

1
2 (ζ+ − ζ−)

(

g(ζ+) + g(ζ−)
)

=

ζ+
∫

ζ−

dζ g(ζ) (11.60)
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Figure 11.7: Top : crossing characteristics (purple hatched region) in the absence of shock
fitting. Bottom : characteristics in the presence of the shock.

and

t =
ζ+ − ζ−

g(ζ−) − g(ζ+)
. (11.61)

Clearly ζ+ > ℓ, hence g(ζ+) = 0 and

ζ+
∫

ζ−

dζ g(ζ) = c0 ·
2ℓ

π

π/2
∫

πζ−/2ℓ

dz cos z =
2ℓ c0

π

{

1 − sin

(

πζ−

2ℓ

)

}

. (11.62)

Thus, the first shock fitting equation yields

1
2 (ζ+ − ζ−) c0 cos

(

πζ−

2ℓ

)

=
2ℓ c0

π

{

1 − sin

(

πζ−

2ℓ

)

}

. (11.63)

The second shock fitting equation gives

t =
ζ+ − ζ−

c0 cos
(πζ−

2ℓ

)
. (11.64)

Eliminating ζ+ − ζ−, we obtain the relation

sin

(

πζ−

2ℓ

)

=
4ℓ

πc0t
− 1 . (11.65)
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Figure 11.8: Evolution of c(x, t) for a series of time values.

Thus,

ζ
−
(t) =

2ℓ

π
sin−1

(

4ℓ

πc0t
− 1

)

(11.66)

ζ+(t) = ζ
−

+
4ℓ

π
· 1 − sin(πζ−/2ℓ)

cos(πζ−/2ℓ)

=
2ℓ

π

{

sin−1

(

4ℓ

πc0t
− 1

)

+ 2

√

πc0t

2ℓ
− 1

}

, (11.67)

where t ≥ tB = 2ℓ/πc0.

(c) Find the shock motion xs(t).

Solution : The shock position is

xs(t) = ζ
−

+ g(ζ
−
) t

=
2ℓ

π
sin−1

(

2

τ
− 1

)

+
4ℓ

π

√
τ − 1 , (11.68)

where τ = t/tB = πc0t/2ℓ, and τ ≥ 1.

(d) Sketch the characteristics for the multivalued solution with no shock fitting, identifying
the region in (x, t) where characteristics cross. Then sketch the characteristics for the
discontinuous shock solution.

Solution : See fig. 11.7.

(e) Find the shock discontinuity ∆c(t).
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Solution : The shock discontinuity is

∆c(t) = g
(

ζ
−

)

− g
(

ζ+

)

= c0 cos

(

πζ−

2ℓ

)

=

√

8ℓ c0

πt

(

1 − 2ℓ

πc0t

)

= 2c0

√
τ − 1

τ
. (11.69)

(f) Find the shock velocity vs(t).

Solution : The shock wave velocity is

cs(t) = 1
2

[

g
(

ζ−

)

+ g
(

ζ+

)

]

= 1
2 ∆c(t)

=

√

2ℓ c0

πt

(

1 − 2ℓ

πc0t

)

. (11.70)

(g) Sketch the evolution of the wave, showing the breaking of the wave at t = tB and the
subsequent evolution of the shock front.

Solution : A sketch is provided in Fig. 11.8.

11.5 Long-time Behavior of Shocks

Starting with an initial profile ρ(x, t), almost all the original details are lost in the t → ∞
limit. What remains is a set of propagating triangular waves, where only certain gross
features of the original shape, such as its area, are preserved.

11.5.1 Fate of a hump

The late time profile of c(x, t) in fig. 11.8 is that of a triangular wave. This is a general
result. Following Whitham, we consider the late time evolution of a hump profile g(ζ). We
assume g(ζ) = c0 for |ζ| > L. Shock fitting requires

1
2

[

g(ζ+) + g(ζ
−
) − 2c0

]

(ζ+ − ζ
−
) =

ζ+
∫

ζ
−

dζ
(

g(ζ) − c0

)

. (11.71)

Eventually the point ζ+ must pass x = L, in which case g(ζ+) = c0. Then

1
2

[

g(ζ+) − c0

]

(ζ+ − ζ
−
) =

L
∫

ζ
−

dζ
(

g(ζ) − c0

)

(11.72)
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Figure 11.9: Initial and late time configurations for a hump profile. For late times, the
profile is triangular, and all the details of the initial shape are lost, save for the area A.

and therefore

t =
ζ+ − ζ

−

g(ζ
−
) − c0

. (11.73)

Using this equation to eliminate ζ+, we have

1
2

(

g(ζ
−
) − c0

)2
t =

L
∫

ζ
−

dζ
(

g(ζ) − c0

)

. (11.74)

As t → ∞ we must have ζ
−
→ −L, hence

1
2

(

g(ζ
−
) − c0

)2
t ≈

L
∫

−L

dζ
(

g(ζ) − c0

)

≡ A , (11.75)

where A is the area under the hump to the line c = c0. Thus,

g(ζ
−
) − c0 ≈

√

2A

t
, (11.76)

and the late time motion of the shock is given by

xs(t) = −L + c0t +
√

2At (11.77)

vs(t) = c0 +

√

A

2t
. (11.78)

The shock strength is ∆c = g(ζ
−
) − c0 =

√

2A/t. Behind the shock, we have c = g(ζ) and
x = ζ + g(ζ) t, hence

c =
x + L

t
for − L + c0t < x < −L + c0t +

√
2At . (11.79)

As t → ∞, the details of the original profile c(x, 0) are lost, and all that remains conserved
is the area A. Both shock velocity and the shock strength decrease as t−1/2 at long times,
with vs(t) → c0 and ∆c(t) → 0.
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Figure 11.10: Top panels : An N-wave, showing initial (left) and late time (right) profiles.
As the N-wave propagates, the areas A and B are preserved. Bottom panels : A P-wave.
The area D eventually decreases to zero as the shock amplitude dissipates.

11.5.2 N-wave and P-wave

Consider the initial profile in the top left panel of fig. 11.10. Now there are two propa-
gating shocks, since there are two compression regions where g′(ζ) < 0. As t → ∞, we
have (ζ

−
, ζ+)

A
→ (0 , ∞) for the A shock, and (ζ

−
, ζ+)

B
→ (−∞ , 0) for the B shock.

Asymptotically, the shock strength

∆c(t) ≡ c
(

x−
s (t), t

)

− c
(

x+
s (t), t

)

(11.80)

for the two shocks is given by

xA
s (t) ≈ c0t +

√
2At , ∆cA ≈ +

√

2A

t
(11.81)

xB
s (t) ≈ c0t −

√
2Bt , ∆cB ≈ −

√

2B

t
, (11.82)

where A and B are the areas associated with the two features This feature is called an
N-wave, for its N (or inverted N) shape.

The initial and late stages of a periodic wave, where g(ζ +λ) = g(ζ), are shown in the right
panels of fig. 11.10. In the t → ∞ limit, we evidently have ζ+ − ζ

−
= λ, the wavelength.

Asymptotically the shock strength is given by

∆c(t) ≡ g(ζ
−
) − g(ζ+) =

ζ+ − ζ
−

t
=

λ

t
, (11.83)
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Figure 11.11: Merging of two shocks. The shocks initially propagate independently (upper
left), and then merge and propagate as a single shock (upper right). Bottom : characteristics
for the merging shocks.

where we have invoked eqn. 11.55. In this limit, the shock train travels with constant
velocity c0, which is the spatial average of c(x, 0) over one wavelength:

c0 =
1

λ

λ
∫

0

dζ g(ζ) . (11.84)

11.6 Shock Merging

It is possible for several shock waves to develop, and in general these shocks form at dif-
ferent times, have different strengths, and propagate with different velocities. Under such
circumstances, it is quite possible that one shock overtakes another. These two shocks then
merge and propagate on as a single shock. The situation is depicted in fig. 11.11. We label
the shocks by A and B when they are distinct, and the late time single shock by C. We
must have

vA
s = 1

2 g
(

ζA
+

)

+ 1
2 g

(

ζA
−

)

(11.85)

vB
s = 1

2 g
(

ζB
+

)

+ 1
2 g

(

ζB
−

)

. (11.86)
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The merging condition requires

ζA
+ = ζB

−
≡ ξ (11.87)

as well as

ζC
+ = ζB

+ , ζC
−

= ζA
−

. (11.88)

The merge occurs at time t, where

t =
ζ+ − ξ

g(ξ) − g(ζ+)
=

ξ − ζ
−

g(ζ
−
) − g(ξ)

. (11.89)

Thus, the slopes of the A and B shock construction lines are equal when they merge.

11.7 Shock Fitting for General J(ρ)

When J(ρ) is quadratic, we may analyze the equation ct + c cx, as it is valid across any
shocks in that it yields the correct shock velocity. If J ′′′(ρ) 6= 0, this is no longer the case,
and we must base our analysis on the original equation ρt + c(ρ) ρx = 0.

The coordinate transformation

(x, c) −→ (x + ct , c) (11.90)

preserves areas in the (x, c) plane and also maps lines to lines. However, while

(x, ρ) −→ (x + c(ρ) t , ρ) (11.91)

does preserve areas in the (x, ρ) plane, it does not map lines to lines. Thus, the ‘pre-
image’ of the shock front in the (x, ρ) plane is not a simple straight line, and our equal area
construction fails. Still, we can make progress. We once again follow Whitham, §2.9.

Let x(ρ, t) be the inverse of ρ(x, t), with ζ(ρ) ≡ x(ρ, t = 0). Then

x(ρ, t) = ζ(ρ) + c(ρ) t . (11.92)

Note that ρ(x, t) is in general multi-valued. We still have that the shock solution covers the
same area as the multivalued solution ρ(x, t). Let ρ

±
denote the value of ρ just to the right

(+) or left (−) of the shock. For purposes of illustration, we assume c′(ρ) > 0, which means
that ρx < 0 is required for breaking, although the method works equally well for c′(ρ) < 0.
Assuming a hump-like profile, we then have ρ

−
> ρ+, with the shock breaking to the right.

Area conservation requires

ρ
−

∫

ρ+

dρ x(ρ, t) =

ρ
−

∫

ρ+

dρ
[

ζ(ρ) + c(ρ) t
]

= (ρ
−
− ρ+)xs(t) . (11.93)
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Since c(ρ) = J ′(ρ), the above equation may be written as

(J+ − J
−
) t − (ρ+ − ρ

−
) =

ρ
−

∫

ρ+

dρ ζ(ρ)

= ρ
−

ζ
−
− ρ+ ζ+ −

ζ
−

∫

ζ+

dζ ρ(ζ) . (11.94)

Now the shock position xs(t) is given by

xs = ζ
−

+ c
−

t = ζ+ + c+t , (11.95)

hence

[

(J+ − ρ+c+) − (J
−
− ρ

−
c
−
)
]

=
c+ − c

−

ζ+ − ζ
−

ζ+
∫

ζ
−

dζ ρ(ζ) . (11.96)

This is a useful result because J
±
, ρ

±
, and c

±
are all functions of ζ

±
, hence what we have

here is a relation between ζ+ and ζ
−
. When J(ρ) is quadratic, this reduces to our earlier

result in eqn. 11.53. For a hump, we still have xs ≈ c0t +
√

2At and c − c0 ≈
√

2A/t as
before, with

A = c′(ρ0)

∞
∫

−∞

dζ
[

ρ(ζ) − ρ0

]

. (11.97)

11.8 Sources

Consider the continuity equation in the presence of a source term,

ρt + c ρx = σ , (11.98)

where c = c(x, t, ρ) and σ = σ(x, t, ρ). Note that we are allowing for more than just
c = c(ρ) here. According to the discussion in the Appendix, the characteristic obey the
coupled ODEs3,

dρ

dt
= σ(x, t, ρ) (11.99)

dσ

dt
= c(x, t, ρ) . (11.100)

In general, the characteristics no longer are straight lines.

3We skip the step where we write dt/ds = 1 since this is immediately integrated to yield s = t.
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11.8.1 Examples

Whitham analyzes the equation
ct + c cx = −α c , (11.101)

so that the characteristics obey

dc

dt
= −α c ,

dx

dt
= c . (11.102)

The solution is

cζ(t) = e−αt g(ζ) (11.103)

xζ(t) = ζ +
1

α

(

1 − e−αt
)

g(ζ) , (11.104)

where ζ = xζ(0) labels the characteristics. Clearly xζ(t) is not a straight line. Neighboring
characteristics will cross at time t if

∂xζ(t)

∂ζ
= 1 +

1

α

(

1 − e−αt
)

g′(ζ) = 0 . (11.105)

Thus, the break time is

tB = min
ζ

t
B

>0

[

− 1

α
ln

(

1 +
α

g′(ζ)

)

]

. (11.106)

This requires g′(ζ) < −α in order for wave breaking to occur.

For another example, consider
ct + c cx = −α c2 , (11.107)

so that the characteristics obey

dc

dt
= −α c2 ,

dx

dt
= c . (11.108)

The solution is now

cζ(t) =
g(ζ)

1 + α g(ζ) t
(11.109)

xζ(t) = ζ +
1

α
ln

(

1 + α g(ζ) t
)

. (11.110)

11.8.2 Moving sources

Consider a source moving with velocity u. We then have

ct + c cx = σ(x − ut) , (11.111)



22 CHAPTER 11. SHOCK WAVES

where u is a constant. We seek a moving wave solution c = c(ξ) = c(x − ut). This leads
immediately to the ODE

(c − u) cξ = σ(ξ) . (11.112)

This may be integrated to yield

1
2 (u − c∞)2 − 1

2(u − c)2 =

∞
∫

ξ

dξ′ σ(ξ′) . (11.113)

Consider the supersonic case where u > c. Then we have a smooth solution,

c(ξ) = u −
[

(u − c∞)2 − 2

∞
∫

ξ

dξ′ σ(ξ′)

]1/2

, (11.114)

provided that the term inside the large rectangular brackets is positive. This is always the
case for σ < 0. For σ > 0 we must require

u − c∞ >

√

√

√

√

√

2

∞
∫

ξ

dξ′ σ(ξ′) (11.115)

for all ξ. If σ(ξ) is monotonic, the lower limit on the above integral may be extended to
−∞. Thus, if the source strength is sufficiently small, no shocks are generated. When the
above equation is satisfied as an equality, a shock develops, and transients from the initial
conditions overtake the wave. A complete solution of the problem then requires a detailed
analysis of the transients. What is surprising here is that a supersonic source need not
produce a shock wave, if the source itself is sufficiently weak.

11.9 Burgers’ Equation

The simplest equation describing both nonlinear wave propagation and diffusion equation
is the one-dimensional Burgers’ equation,

ct + c cx = ν cxx . (11.116)

As we’ve seen, this follows from the continuity equation ρt + jx when j = J(ρ) − νρx, with
c = J ′(ρ) and c′′(ρ) = 0.

We have already obtained, in §11.3.1, a solution to Burgers’ equation in the form of a
propagating front. However, we can do much better than this; we can find all the solutions
to the one-dimensional Burgers’ equation. The trick is to employ a nonlinear transformation
of the field c(x, t), known as the Cole-Hopf transformation, which linearizes the PDE. Once
again, we follow the exceptionally clear discussion in the book by Whitham (ch. 4).
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The Cole-Hopf transformation is defined as follows:

c ≡ −2ν
ϕx

ϕ
=

∂

∂x

(

− 2ν ln ϕ
)

. (11.117)

Plugging into Burgers’ equation, one finds that ϕ(x, t) satisfies the linear diffusion equation,

ϕt = ν ϕxx . (11.118)

Isn’t that just about the coolest thing you’ve ever heard?

Suppose the initial conditions on ϕ(x, t) are

ϕ(x, 0) = Φ(x) . (11.119)

We can then solve the diffusion equation 11.118 by Laplace transform. The result is

ϕ(x, t) =
1√

4πνt

∞
∫

−∞

dx′ e−(x−x′)2/4νt Φ(x′) . (11.120)

Thus, if c(x, t = 0) = g(x), then the solution for subsequent times is

c(x, t) =

∞
∫

−∞
dx′ (x − x′) e−H(x,x′,t)/2ν

t
∞
∫

−∞
dx′ e−H(x,x′,t)/2ν

, (11.121)

where

H(x, x′, t) =

x′
∫

0

dx′′ g(x′′) +
(x − x′)2

2t
. (11.122)

11.9.1 The limit ν → 0

In the limit ν → 0, the integrals in the numerator and denominator of eqn. 11.121 may be
computed via the method of steepest descents. This means that extremize H(x, x′, t) with
respect to x′, which entails solving

∂H

∂x′ = g(x′) − x − x′

t
. (11.123)

Let ζ = ζ(x, t) be a solution to this equation for x′, so that

x = ζ + g(ζ) t . (11.124)

We now expand about x′ = ζ, writing x′ = ζ + s, in which case

H(x′) = H(ζ) + 1
2H ′′(ζ) s2 + O(s3) , (11.125)
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where the x and t dependence is here implicit. If F (x′) is an arbitrary function which is
slowly varying on distance scales on the order of ν1/2, then we have

∞
∫

−∞

dx′ F (x′) e−H(x′)/2ν ≈
√

4πν

H ′′(ζ)
e−H(ζ)/2ν F (ζ) . (11.126)

Applying this result to eqn. 11.121, we find

c ≈ x − ζ

t
, (11.127)

which is to say

c = g(ζ) (11.128)

x = ζ + g(ζ) t . (11.129)

This is precisely what we found for the characteristics of ct + c cx = 0.

What about multivaluedness? This is obviated by the presence of an additional saddle point
solution. I.e. beyond some critical time, we have a discontinuous change of saddles as a
function of x:

x = ζ
±

+ g(ζ
±
) t −→ ζ

±
= ζ

±
(x, t) . (11.130)

Then

c ∼ 1

t
·

x−ζ
−√

H′′(ζ
−

)
e−H(ζ

−
)/2ν +

x−ζ+√
H′′(ζ+)

e−H(ζ+)/2ν

1√
H′′(ζ

−
)
e−H(ζ

−
)/2ν + 1√

H′′(ζ+)
e−H(ζ+)/2ν

. (11.131)

Thus,

H(ζ+) > H(ζ
−
) ⇒ c ≈ x − ζ

−

t
(11.132)

H(ζ+) < H(ζ
−
) ⇒ c ≈ x − ζ+

t
. (11.133)

At the shock, these solutions are degenerate:

H(ζ+) = H(ζ
−
) ⇒ 1

2(ζ+ − ζ
−
)
(

g(ζ+) + g(ζ
−
)
)

=

ζ+
∫

ζ
−

dζ g(ζ) , (11.134)

which is again exactly as before. We stress that for ν small but finite the shock fronts are
smoothed out on a distance scale proportional to ν.

What does it mean for ν to be small? The dimensions of ν are [ν] = L2/T , so we must
find some other quantity in the problem with these dimensions. The desired quantity is the
area,

A =

∞
∫

−∞

dx
[

g(x) − c0

]

, (11.135)
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where c0 = c(x = ±∞). We can now define the dimensionless ratio,

R ≡ A

2ν
, (11.136)

which is analogous to the Reynolds number in viscous fluid flow. R is proportional to the
ratio of the nonlinear term (c − c0) cx to the diffusion term νcxx.

11.9.2 Examples

Whitham discusses three examples: diffusion of an initial step, a hump, and an N-wave.
Here we simply reproduce the functional forms of these solutions. For details, see chapter
4 of Whitham’s book.

For an initial step configuration,

c(x, t = 0) =

{

c1 if x < 0

c2 if x > 0 .
(11.137)

We are interested in the case c1 > c2. Using the Cole-Hopf transformation and applying
the appropriate initial conditions to the resulting linear diffusion equation, one obtains the
complete solution,

c(x, t) = c2 +
c1 − c2

1 + h(x, t) exp
[

(c1 − c2)(x − vst)/2ν
] , (11.138)

where
vs = 1

2 (c1 + c2) (11.139)

and

h(x, t) =
erfc

(

−x−c2t√
4νt

)

erfc
(

+
x−c1t
√

4νt

) . (11.140)

Recall that erfc(z) is the complimentary error function:

erf(z) =
2√
π

z
∫

0

du e−u2
(11.141)

erfc(z) =
2√
π

∞
∫

z

du e−u2
= 1 − erf(z) . (11.142)

Note the limiting values erfc(−∞) = 2, erfc(0) = 1 and erfc(∞) = 0. If c2 < x/t < c1,
then h(x, t) → 1 as t → ∞, in which case the solution resembles a propagating front. It is
convenient to adimensionalize (x, t) → (y, τ) by writing

x =
ν y

√

c1c2

, t =
ν τ

c1c2

, r ≡
√

c1

c2

. (11.143)
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Figure 11.12: Evolution of profiles for Burgers’ equation. Top : a step discontinuity evolving
into a front at times τ = 0 (blue), τ = 1

5 (green), and τ = 5 (red).. Middle : a narrow hump
c0 +Aδ(x) evolves into a triangular wave. Bottom : dissipation of an N-wave at times τ = 1

4
(blue), τ = 1

2 (green), and τ = 1 (red).

We then have
c(z, τ)
√

c1c2

= r−1 +
2α

1 + h(z, τ) exp(αz)
, (11.144)

where

h(z, τ) = erfc

(

− z + ατ

2
√

τ

)

/

erfc

(

+
z − ατ

2
√

τ

)

(11.145)

and

α ≡ 1
2

(

r − r−1
)

, z ≡ y − 1
2

(

r + r−1
)

τ . (11.146)

The second example involves the evolution of an infinitely thin hump, where

c(x, t = 0) = c0 + Aδ(x) . (11.147)
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The solution for subsequent times is

c(x, t) = c0 +

√

ν

πt
·

(eR − 1) exp
(

−x−c0t
4νt

)

1 + 1
2(eR − 1) erfc

(

x−c0t
√

4νt

) , (11.148)

where R = A/2ν. Defining

z ≡ x − c0t√
2At

, (11.149)

we have the solution

c = c0 +

(

2A

t

)1/2 1√
4πR

· (eR − 1) e−Rz2

1 + 1
2(eR − 1) erfc(

√
R z)

. (11.150)

Asymptotically, for t → ∞ with x/t fixed, we have

c(x, t) =

{

x/t if 0 < x <
√

2At

0 otherwise .
(11.151)

This recapitulates the triangular wave solution with the two counterpropagating shock fronts
and dissipating shock strengths.

Finally, there is the N-wave. If we take the following solution to the linear diffusion equation,

ϕ(x, t) = 1 +

√

a

t
e−x2/4νt , (11.152)

then we obtain

c(x, t) =
x

t
· e−x2/4νt

√

t
a + e−x2/4νt

. (11.153)

In terms of dimensionless variables (y, τ), where

x =
√

aν y , t = aτ , (11.154)

we have

c =

√

ν

a

y

τ
· e−y2/4τ

√
τ + e−y2/4τ

. (11.155)

The evolving profiles for these three cases are plotted in fig. 11.12.

11.9.3 Confluence of shocks

The fact that the diffusion equation 11.118 is linear means that we can superpose solutions:

ϕ(x, t) = ϕ1(x, t) + ϕ2(x, t) + . . . + ϕN (x, t) , (11.156)
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Figure 11.13: Merging of two shocks for piecewise constant initial data. The (x, t) plane is
broken up into regions labeled by the local value of c(x, t). For the shocks to form, we require
c1 > c2 > c3. When the function ϕj(x, t) dominates over the others, then c(x, t) ≈ cj .

where

ϕj(x, t) = e−cj(x−bj)/2ν e+c2j t/4ν . (11.157)

We then have

c(x, t) = −2νϕx

ϕ
=

∑

i ci ϕi(x, t)
∑

i ϕi(x, t)
. (11.158)

Consider the case N = 2, which describes a single shock. If c1 > c2, then at a fixed time t
we have that ϕ1 dominates as x → −∞ and ϕ2 as x → +∞. Therefore c(−∞, t) = c1 and
c(+∞) = c2. The shock center is defined by ϕ1 = ϕ2, where x = 1

2(c1 + c2) t.

Next consider N = 3, where there are two shocks. We assume c1 > c2 > c3. We identify
regions in the (x, t) plane where ϕ1, ϕ2, and ϕ3 are dominant. One finds

ϕ1 > ϕ2 : x < 1
2 (c1 + c2) t +

b1c1 − b2c2

c1 − c2

(11.159)

ϕ1 > ϕ3 : x < 1
2 (c1 + c3) t +

b1c1 − b3c3

c1 − c3

(11.160)

ϕ2 > ϕ3 : x < 1
2 (c2 + c3) t +

b2c2 − b3c3

c2 − c3

. (11.161)

These curves all meet in a single point at (xm, tm), as shown in fig. 11.13. The shocks are
the locus of points along which two of the ϕj are equally dominant. We assume that the
intercepts of these lines with the x-axis are ordered as in the figure, with x∗

12 < x∗
13 < x∗

23,
where

x∗
ij ≡

bici − bjcj

ci − cj

. (11.162)
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When a given ϕi(x, t) dominates over the others, we have from eqn. 11.158 that c ≈ ci.
We see that for t < t∗ one has that ϕ1 is dominant for x < x∗

12, and ϕ3 is dominant for
x > x∗

23, while ϕ2 dominates in the intermediate regime x∗
12 < x < x∗

23. The boundaries
between these different regions are the two propagating shocks. After the merge, for t > tm,
however, ϕ2 never dominates, and hence there is only one shock.

11.10 Appendix I : The Method of Characteristics

Consider the quasilinear PDE

a1(x, φ)
∂φ

∂x1

+ a2(x, φ)
∂φ

∂x2

+ . . . + aN (x, φ)
∂φ

∂xN

= b(x, φ) . (11.163)

This PDE is called ‘quasilinear’ because it is linear in the derivatives ∂φ/∂xj . The N
independent variables are the elements of the vector x = (x1, . . . , xN ). A solution is a
function φ(x) which satisfies the PDE.

Now consider a curve x(s) parameterized by a single real variable s satisfying

dxj

ds
= aj

(

x, φ(x)
)

, (11.164)

where φ(x) is a solution of eqn. 11.163. Along such a curve, which is called a characteristic,
the variation of φ is

dφ

ds
=

N
∑

j=1

∂φ

∂xj

dzj

ds
= b

(

x(s), φ
)

. (11.165)

Thus, we have converted our PDE into a set of (N +1) ODEs. To integrate, we must supply
some initial conditions of the form

g
(

x, φ)
∣

∣

∣

s=0
= 0 . (11.166)

This defines an (N − 1)-dimensional hypersurface, parameterized by {ζ1, . . . , ζN−1}:

xj(s = 0) = hj(ζ1, . . . , ζN−1) , j = 1, . . . , N (11.167)

φ(s = 0) = f(ζ1, . . . , ζN−1) . (11.168)

If we can solve for all the characteristic curves, then the solution of the PDE follows. For
every x, we identify the characteristic curve upon which x lies. The characteristics are iden-
tified by their parameters (ζ1, . . . , ζN−1). The value of φ(x) is then φ(x) = f(ζ1, . . . , ζN−1).
If two or more characteristics cross, the solution is multi-valued, or a shock has occurred.

11.10.1 Example

Consider the PDE
φt + t2 φx = −xφ . (11.169)



30 CHAPTER 11. SHOCK WAVES

We identify a1(t, x, φ) = 1 and a2(t, x, φ) = t2, as well as b(t, x, φ) = −xφ. The character-
istics are curves

(

t(s), x(s)
)

satisfing

dt

ds
= 1 ,

dx

ds
= t2 . (11.170)

The variation of φ along each characteristics is given by

dφ

ds
= −xφ . (11.171)

The initial data are expressed parametrically as

t(s = 0) = 0 (11.172)

x(s = 0) = ζ (11.173)

φ(s = 0) = f(ζ) . (11.174)

We now solve for the characteristics. We have

dt

ds
= 1 ⇒ t(s, ζ) = s . (11.175)

It then follows that
dx

ds
= t2 = s2 ⇒ x(s, ζ) = ζ + 1

3s3 . (11.176)

Finally, we have

dφ

ds
= −xφ = −

(

ζ + 1
3s3

)

φ ⇒ φ(s, ζ) = f(ζ) exp
(

− 1
12s4 − sζ

)

. (11.177)

We may now eliminate (ζ, s) in favor of (x, t), writing s = t and ζ = x − 1
3t3, yielding the

solution

φ(x, t) = f
(

x − 1
3t3

)

exp
(

1
4 t4 − xt

)

. (11.178)

11.11 Appendix II : Shock Fitting an Inverted Parabola

Consider the shock fitting problem for the initial condition

c(x, t = 0) = c0

(

1 − x2

a2

)

Θ(a2 − x2) , (11.179)

which is to say a truncated inverted parabola. We assume j′′′(ρ) = 0. Clearly −cx(x, 0) is
maximized at x = a, where −cx(a, 0) = 2c0/a, hence breaking first occurs at

(

xB , tB
)

=
(

a ,
a

2c0

)

. (11.180)
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Clearly ζ+ > a, hence c+ = 0. Shock fitting then requires

1
2(ζ+ − ζ

−
)(c+ + c

−
) =

ζ+
∫

ζ
−

dζ c(ζ) (11.181)

=
c0

3a2
(2a + ζ

−
)(a − ζ

−
)2 . (11.182)

Since

c+ + c
−

=
c0

a2
(a2 − ζ2

−
) , (11.183)

we have

ζ+ − ζ
−

= 2
3 (2a + ζ

−
)

(

a − ζ
−

a + ζ
−

)

. (11.184)

The second shock-fitting equation is

ζ+ − ζ
−

= (c
−
− c+) t . (11.185)

Eliminating ζ+ from the two shock-fitting equations, we have

t =
2a2

3c0

· 2a + ζ
−

(a + ζ
−
)2

. (11.186)

Inverting to find ζ
−
(t), we obtain

ζ
−
(t)

a
=

a

3c0t
− 1 +

a

3c0t

√

1 +
6c0t

a
. (11.187)

The shock position is then xs(t) = ζ
−
(t) + c

−

(

ζ
−
(t)

)

t.

It is convenient to rescale lengths by a and times by tB = a/2c0, defining q and τ from
x ≡ aq and t ≡ aτ/2c0. Then

q
−
(τ) =

ζ
−

a
=

2

3τ
− 1 +

2

3τ

√
1 + 3τ . (11.188)

and

qs(τ) =
xs

a
= −1 +

2

9τ

[

(1 + 3τ)3/2 + 1
]

. (11.189)

The shock velocity is

q̇s = − 2

9τ2

[

1 + (1 + 3τ)3/2
]

+
1

τ
(1 + 3τ)1/2 (11.190)

= 3
4 (τ − 1) + 81

64 (τ − 1)2 + . . . ,

with vs = 2c0 q̇s = 1
2c

−
if we restore units. Note that q̇s(τ = 1) = 0, so the shock curve

initially rises vertically in the (x, t) plane. Interestingly, vs ∝ (τ − 1) here, while for the
example in §11.4.3, where c(x, 0) had a similar profile, we found vs ∝ (τ − 1)1/2 in eqn.
11.69.


