Physics 215C – Problem Set #2 due Monday May 4

1. The linear σ model contains the field $\Sigma \equiv \sigma + i\tau^a \pi^a$, which transforms under chiral $SU(2)_L \times SU(2)_R$ symmetry by $\Sigma \to L\Sigma R^{\dagger}$, where $L = e^{i\alpha_L^a \tau^a/2}$ and $R = e^{i\alpha_R^a \tau^a/2}$ are general $SU(2)_L$ and $SU(2)_R$ transformations, respectively. The Lagrangian of the model also contains the nucleon doublet

$$\Psi = \begin{pmatrix} p \\ n \end{pmatrix},$$

which transforms as $\Psi_L \to L \Psi_L$ and $\Psi_R \to R \Psi_R$ under chiral symmetry. The chiral Lagrangian is

$$\mathcal{L} = i\bar{\Psi}\gamma_{\mu}\partial^{\mu}\Psi - g\left(\bar{\Psi}_{L}\Sigma\Psi_{R} + \bar{\Psi}_{R}\Sigma^{\dagger}\Psi_{L}\right) + \frac{1}{2}\mathrm{Tr}\;\partial_{\mu}\Sigma\partial^{\mu}\Sigma^{\dagger} - \mathrm{Tr}\;V\left(\Sigma^{\dagger}\Sigma\right)$$

(a) Show that the 4 scalar fields σ and π^a , a = 1, 2, 3, transform as

$$\delta \sigma = (\alpha_A)^a \pi^a,$$

$$\delta \pi^a = -(\alpha_A)^a \sigma - \epsilon^{abc} (\alpha_V)_b \pi_c$$

where

$$\alpha_V{}^a \equiv \frac{1}{2} \left(\alpha_L{}^a + \alpha_R{}^a \right),$$
$$\alpha_A{}^a \equiv \frac{1}{2} \left(\alpha_R{}^a - \alpha_L{}^a \right),$$

are the parameters describing $SU(2)_V \times SU(2)_A$ transformations.

(b) Show that the chiral transformation is equivalent to

$$\Psi \to e^{i(\alpha_V^a + \gamma_5 \alpha_A^a)\tau^a/2} \Psi.$$

(c) Deduce the $SU(2)_V \times SU(2)_A$ algebra from the $SU(2)_L \times SU(2)_R$ algebra.

(d) Find the Nöther currents associated with $SU(2)_L$, $SU(2)_R$, SU(2)V and $SU(2)_A$ transformations.

(e) Show that after spontaneous symmetry breakdown, when $\langle \sigma \rangle = f_{\pi}$, the axial current J_A^{μ} acting on a one-pion state gives a non-vanishing matrix element with the vacuum, i.e.

$$\langle 0|J^{\mu a}_{A}|\pi^{b}\rangle = if_{\pi}p^{\mu}\delta^{ab}$$

where p^{μ} is the pion momentum. Thus, there is a non-zero amplitude for a pion to "disappear" into the vacuum.