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Academic) - Low Frequency Modes in Confined
- Plasmas

In this chapter, typical examples of low frequency modes in plasmas are
explained. The mechanisms to determine the dispersion relation are described.

5.1 Modes and Dispersion Relations

Fluctuations in plasmas do not form a white noise, but oscillatory patterns
are often excited. The spatio-temporal patterns that appear (either stationary
or propagating) are called modes. The spectrum of mode is a characterizing
information in the continuous media. If one imposes an external perturbation of
the form

E, . exp(ik - © — iwt)

(where k, @ can be complex), then the charged elements of plasma are displaced
S0 as to generate a response field

Einduced eXP(lk c T —iwt).
If there is a relation of (k, w)
w = w(k) (5.1)

for which the ratio E,nd,,(.ﬂ,/ém becomes very large, then a pattern exp{ik - & —
iw(k)t} is expected to have a large amplitude and to be selectively observed.
Such a pattern is called a mode, and the relation (5.1) is called the dispersion
relation.

The search of various modes in confined plasmas is a fundamental task in
investigating the fluctuations and transport in plasmas. The parameters (k, w) are
related to the spatial-temporal scales that play roles in the transport processes.

57




58 Low Frequency Modes in Confined Plasmas

The dispersion relation is determined by the electric conductivity tensor
in equation (4.39), Ji, = (Z, 0 kw)Ei,. The dielectric tensor is introduced
(according to the convention) as

iCzHo
ek,w)y=1-— Tk 5.2
(k, ) " (le ik ) (5.2)
where I is the unit tensor, (o is the magnetic permeability of vacuum and ¢ is
the velocity of light. Substituting equation (4.39) into Maxwell’s equation one
has the relation

ke\ kk
|:F.‘(k, CU) - (73) (I - F):I Ek.w = %je.w.k.w (53)

where ek iS an externally imposed current perturbation of the Fourier
component (k, w). Equation (5.3) predicts that the perturbed field E; , can
take a finite amplitude even without the external perturbation, if the condition

ke\? kk
wo-(5) (--4)

is satisfied. Equation (5.4) is the condition that Ey , has a nontrivial solution for
Jexr:kw = 0. The dispersion relation (5.1) is given as a solution of equation (5.4).

The relation (5.1) could depend on the amplitude of perturbations: if it
is dependent, it is a nonlinear dispersion relation. In the zero-amplitude limit
of perturbations, equation (5.1) is the linear dispersion relation. The literature
explains the various linear modes in plasmas in detail (e.g. [2.1-2.6]). Among
various modes in plasmas, those of low frequencies have particular importance
in the study of plasma transport. This is because the radial excursion of plasma
elements is larger if the frequency is lower, for given amplitude of perturbations,
as is shown in equation (4.7). In addition to this, fluctuations which are relevant
to the transport are often excited by the plasma inhomogeneities.

de[ = O (54)

5.1.1 Fluid Equations

The response of the plasma to a perturbed field is calculated based on the
continuity equation, equation of motion and energy balance equation (equation
of state). In the fluid description of the plasma, they are given as [2.3,2.4]

0
5n_,<+V~(n,V,-)=O (55)
d
m,n,a\/; =en(E+V;xB)—Vp; - V. I (5.6

and

3 9
EHI'ET,'"'RIV"//=_V'q/—H/VV;+P.i (57)
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where

d_2 vy

P +V. (5.8)
is the total time derivative, g; is the heat flux, IT; is the viscous tensor and
P; is the energy input. The ofi-diagonal tensor IT vanishes for the case of an
isotropic velocity distribution. The energy input includes the energy exchange
between plasma species.

The set of equations requires the knowledge on the energy transport and
deformation of the distribution function; it is not closed in the realm of a fluid
description, but needs the kinetic analysis of the plasma response. In some
cases, however, a relevant and simplified expression is obtained, and is called
the equation of state. 1f the temporal change is fast in comparison with the flow
rate of the energy, then the adiabatic condition

d 4
P = 0 (5.9)

is a good approximate relation to close the set of equations. The parameter y
in this equation is the specific heat ratio. In contrast, if the energy equilibration
is faster, then the simplification

T; = constant (5.10)

is a good approximation.

These equations (5.5)~(5.7) and (5.9) (or (5.10)) describe the plasma
dynamics combined with Maxwell’s equation below

3
VxB=u0(ZJ,-+5057E) (5.11)
J

5
VxE=—$B. (5.12)

5.1.2 Linearization

The evolution of perturbations is studied by the expansion of plasma parameters
as

n=no+n V=V+V p=po+p (5.13)

in the vicinity of equilibrium parameters. (Here ‘equilibrium’ refers to the
stationary mechanical equilibrium, and is denoted by the suffix 0. The suffix j,
distinguishing plasma species, is suppressed if not confused.) Terms are retained
up to the first order of perturbation. The equation of motion and the continuity
equation, for perturbed components, are given as

0 ~ - - ~ - o~
mn (EV+ WwW-VV+V. VVI)) =en(E+VyxB+V xBy)—Vp (5.14)
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d -
;ﬁ—%—V-(ﬁ%—i—noV):O. (5.15)
[§

With the help of the equation of state, one obtains either

J _ 1 0 - - . .
—png” — ypony” Ié?fz +V -V(pony,")=0 (adiabatic limit)  (5.16)

at

or
T=0 (iso-thermal limit). (5.17)

The perturbed density, velocity and temperature (or pressure) (nj, \7,~, f,-) are
calculated in terms of the perturbed electromagnetic fields (E, B).

5.1.3 Model Picture of Plasmas

A basic approximation in the plasma response to a low frequency perturbation
is as follows. Namely,

(i) electrons can almost freely move along the field line, or
(ii) the parallel electric conductivity is high,

characterizing the high-temperature plasmas. The magnetic field is strong, i.e.,
(iii) the magnetic pressure B?/2p0 is much higher than the plasma pressure p.

The ratio of the plasma pressure to the magnetic pressure is called the ‘plasma
beta-value’. It is conventionally expressed as

= (5.18)

and is considered to be much smaller than unity here. The condition
(iv) the scale-length is much longer than the Debye length, kAp < 1,

is often employed.

5.2 Sound Wave and Shear Alfvén Wave

When a perturbation amplitude is small, and a linear response of a plasma is
of interest, then a calculation of the dielectric tensor follows a well defined
procedure. We leave the detailed analysis of linear response functions in
literature (e.g., [2.1-2.8]) and here explain two examples of the low frequency
modes in magnetized plasmas, the sound mode and the shear Alfvén mode.
These two branches of waves are defined in a uniform plasma and are modified
in various ways in non-uniform plasmas. The sound mode and the shear Alfvén
mode constitute the basis for understanding the fluctuations in confined plasmas.

A uniform, stationary and slab (planar) plasma is considered (figure 5.1).
Influences of nonuniformity are discussed in the following sections.
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|s

Figure 5.1. Slab plasma model with strong magnetic field.

5.2.1 Ion Sound Wave

Iﬁ_e]ldus consider a perturbation that is propagating in the direction of magnetic
cld,

k= (0, O, k”). (519)

("I?he pr.opagation in the direction of the magnetic field is not an essential feature
of the ion sound wave. This choice is made just for simplicity.) In terms of

the fluid des.cription, equilibrium plasma parameters (ng, Tp) are constant and
the plasma is staying still, V; = 0.

: . In this circumstance, a response to an
electrostatic perturbation,

E=-V§
is studied. The relevant mode is in the range
kvl € @ <K lkyugsel (5.20)

'where Ushi anfi Ushe are thermal velocities of ions and electrons, respectively. The

1on response is approximated as adiabatic. The electron response is iso-thermal

because the phase velocity w/k; is slower than the thermal velocity v, ’
The equation of motion for ions is written as "

—iminwV, . = —ikjein; ¢ — iky p;. (5.21)
The continuity equation yields the relation
—iwf; + ikyno V., = 0. (5.22)

I~f the adiaPatic r'elz%ti()n is used for ions, the equation of state (5.9) yields
pi = y;Tin;. Eliminating V; and pi from equations (5.21) and (5.22) with
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the help of the adiabatic condition, one has

(5.23)

~ 2 ~
n; ZI Tekﬁ 1 C’(P
n; miw? 1 — yikjvy 02 T,
where Z; is the charge number of ions, ¢; = Z;e.
Because the electron mass is small, the equation of motion for electrons

gives an approximate relation as
—en,E, — ikyp, = 0.

The fast motion of electrons tends to equilibrate the temperature along the field
line, so that an iso-thermal approximation, T, =~ 0, is used. With the help of
equation (5.17), the electron density is given as

ne

ne Te

13,

(5.24)

The Poisson equation is written in the form of a charge neutrality condition, i.e.,
ne = Zin;. (5.25)

Substituting the responses (5.23) and (5.24) into equation (5.25), the dispersion
relation is finally given as

w* = clkj (5.26-1)

with
= (ZiToo + viToi)

5

. (5.26-2)
mi

The dispersion relation (5.26), shown in figure 5.2, indicates that this perturbation

propagates with a constant phase velocity,

|w/klll = Cs

which is called the ion sound velocity.
This ion sound mode is similar to sound waves in a neutral gas. Note that
the ion sound speed is finite in the limit of

Tio — 0.

An expansion of ions in a condensed layer to a rarefied layer is governed by the
electric field, not only by the pressure of ions. This is in contrast to a sound
wave in neutral gas, where the expansion is governed by the pressure. The
ion sound mode in plasmas has a collective nature, where plasma particles in
different locations are interacting with each other through the long range electric
field. Free electron motions along a field line, given in equation (5.24), play
an essential role in determining the pattern of compression or decompression of
ions.
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Figure 5.2. Dispersion relation of the ion sound wave (solid line) and the shear Alfvén
wave (dashed line).

5.2.2 Shear Alfvén Wave

A nearly free electron motion along the field line gives another type of mode in
a magnetized plasma. The magnetic perturbation can also propagate in a plasma
as a mode. The shear Alfvén mode is accompanied by the perturbed magnetic
field in the direction perpendicular to a main magnetic field, B,. (There is
gnother type of perturbation, which is associated with the magnetic perturbation
in the direction of the main magnetic field, B;. For such a mode, a perturbation
of magnetic energy associated with the wave is large. The excitation of such a
mode requires the larger free energy.)

For an electromagnetic perturbation, the response in a plasma to induce a
perturbed current is a key. We consider a perturbation which propagates in the
z-direction, equation (5.19), with the component

B = (B,,0,0) (5.27)
E= (o, —f"-éx,o) .
k" (5.28)

In expressing~ the electric field perturbation E, in terms of the magnetic
perturbation, By, we use equation (5.12). '

Summing up equation (5.14) for electrons and ions, and subtracting one
from the other, one has the MHD equations. Components in the direction
perpendicular to the magnetic field are of interest,

9~ -
mini =V =J x By~ V (5.29)

. - 1
Ey+(V x Bo)y = —V,p; = 0. (5.30)

In the calculation of equation (5.30), the ion inertia effect is neglected since
the change rate is slow in time compared to the ion cyclotron frequency. The
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Figure 5.3. Flow and distorted magnetic field line for the propagation of a shear Alfvén

wave.

electron inertia effect is also neglected. In this simplified approximation, a
friction on electrons by ions is also neglected. These equations are qften called
the ideal MHD equation. For perturbations of the form of equation (5.19),
equations (5.29) and (5.30) provide the relation

V. = B;'E, (5.31)
and ‘ L,
P _imnw ~‘. _ 1m,:z,w B.x- (5.32)
‘ B; Byky

Substituting equation (5.32) into Maxwell’s equation,

B, =g (5.33)
ky
one has the dispersion relation
»’ = kjv} (5.34)
with R
v = Do (5.35)
A min;jio
where v, is called the Alfvén velocity. The dispersion relation is plotted in
figure 5.2.

The patterns of current, displacement and perturbed field are shown in
figure 5.3. The plasma motion, equation (5.31), is expressed as

{/.r = (B\/BO)UA-

This shows that the plasma motion satisfies the frozen-in condition, i.e., the
distortion of the magnetic field lines coincides with the displacement of the
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plasma. The frozen-in condition follows from Ohm’s law equation (5.30), and
is satisfied generally so long as the parallel resistance is not important.

An approximately free electron motion along the field line is essential in
determining the mode structures of bhoth the ion sound mode and the Alfvén
mode. The ‘free’ parallel motion of electrons is an idealization. In reality,
however, the free electron motion is Just an approximation, and a small but
finite impedance affects an idealized ‘free’ electron motion. This impedance
governs the dynamics of such modes as is explained in the next chapter.

5.3 Drift Wave and Drift-Alfvén Wave

5.3.1 Diamagnetic Drift

When a plasma is inhomogeneous, as is illustrated in figure 5.4, there appears
a preferential direction for a wave. The force balance of a plasma implies that
there is a current, i.e., the difference of flow velocities of ions and electrons, on
the magnetic surface. A current which flows perpendicular to a magnetic field
line is called a diamagnetic current. (A current in the direction of the magnetic
field is called a force-free current, because it does not give rise to the Lorentz
force.) The flow velocity of a plasma in the Vp x B-direction is named a
diamagnetic velocity. It is given in the presence of the density gradient as

T; 1dn;,

4= ¢;Bn; dx (5.36)
in the configuration of figure 5.4. It is seen that the diamagnetic current,
Ju = (ein; Vy; — en,V,,)9, satisfies the force balance equation, J; x B = Vp,
equation (3.1). A similar diamagnetic flow is generated by the temperature
gradient as well.

In a microscopic picture, the flow equation (5.36) is generated by the
difference of the number density of gyrating (i.e., cyclotron motion) particles
(figure 5.5(a)). In a small volume of interest at location x, ions which move in
the y-direction have the gyro-centre at the position with larger x, x' = x + p;.
lons moving in the —y-direction have the centre at the position with smaller x,
x" = x — p;. Because of the density gradient in the x-direction, the number of
particles moving in the — y-direction is larger. As a result of this difference, the
fluid velocity results in the — y-direction.

In contrast, the drift due to an inhomogeneity of magnetic field causes
motion of the gyro-centre of the particles in the drift direction (in the direction
of VB x B). Figure 5.5(b) illustrates the case of inhomogeneous magnetic
field; a field is mainly directed in the z-direction, but its magnitude gradually
increases in the x-direction. Due to the small change of magnetic field across
the cyclotron radius, a cyclotron orbit does not close itself on the x-y-plane,
and a resultant drift in the y-direction appears. The drift velocity due to the
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Figure 5.4. Diamagnetic flow V, and diamagnetic current J, in an inhomogeneous

plasma.

ﬂ»”m @B}
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Figure 5.5. Gyro-motion and diamagnetic flow of ions in inhomogeneous plasma (a.).
Configuration of the plasma is the same as figure 5.4. If the magnetic field strength is
varying in the x-direction, flow in the y-direction V), also appears (b).

magnetic field inhomogeneity, Vp ;, is given as

W, 1d|BI>A
= (20 5 (5.37)
Vo.i e,-B<|B| dx /-

where W; is the energy of particles. The diamagnetic drift and the magnetic
curvature drift are in the same direction (additive) if the condition

Vp-VIB >0 (5.38)

holds.
As is shown in the next chapters, the sign of the product Vp - V|B|

is important for the developments of fluctuations in inhomogeneous plasmag
The case of equation (5.38) is called bad curvature. (Good curvature if
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Vp - V|B| < 0.) The name ‘curvature’ is used because the magnetic field
strength becomes inhomogencous when the magnetic field line is slightly curved.
For a vacuum magnetic field, the scale-length of curvature and the inhomogeneity
scale-length of field strength are equal (see also subsection 6.2.1).

5.3.2 Drift Wave

When the drift velocity is not negligible in comparison with the phase velocity,
a preferential direction appears in a wave propagation. Consider an electrostatic
perturbation, which is obliquely propagating,

k = (0, k_v,k“). (5.39)
The electric field is expressed in terms of the perturbed potential as
E = —ik. (5.40)

In an inhomogeneous plasma, a new term appears in the continuity equation,
equation (5.22), as

- dn
—iwi; + ikynio Vi, + V7, # =0 (5.41)
X

with
Vi« = —ik,$/B.

(One may expect that a Doppler shift term like iky Vi would appear in the time
derivative, e.g., ik, ViR, in the left-hand side of equation (5.41). However, this is
not the case. Recall that particles do not move in the direction of the diamagnetic
drift, as is explained in relation with figure 5.5(a) [1.6].) The equation of ion
motion in the z-direction is unchanged and equation (5.21) gives a relation

Vie =kym o™ (e + ng' viTor,) (5.42)

with the equation of state, equation (5.9). Substituting perturbed velocities V,-_,
and V; ; into equation (5.41), one finds the perturbed ion density as

—1 -

Ay ki KT kT dng ed
— = - —yT _—— ] 543
(w wm; vitio wm;  e;Bn;y dx T; ( )

The free motion of electrons gives the Boltzmann relation for the electron
response as equation (5.24), A, /n, = ed/T,. Substitution of equations (5.24)
and (5.43) into the charge neutrality condition en; = en, gives the dispersion
relation as

o’ — wo, — ki =0 (5.44)
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Figure 5.6. Dispersion relation for the electrostatic drift wave.

where w, is the drift frequency defined by

kyT, dno

- . (5.45)
eBng dx

Wy = k_vvde =

The dispersion relation is shown in figure 5.6. . o .
Wl[:en the mode propagates nearly perpendicular to the magnetic field line,

k%ij > kﬁc:ﬁ, ie., N .
\k_\lL—" > |kl (5.46)
n

the frequency of the mode is approximately given as

W = Wy. (5.47)

In equation (5.46) L, is the scale-length of the density gradient,
—Vn/n = (/L)X

and p, is the ion cyclotron radius evaluated by the electron temperatudrg -
If the wave propagates mainly in the z-direction, k, — O, the dispersi

relation reduces to that of an ion sound wave.

5.3.3 Drift-Alfvén Wave

The electromagnetic mode is also influenced by.an inhomogenelt)lfc, ki)\
preferential direction of propagation is chosen as cguauqn (5.39), k = (0'23'“ t;lu;
The perturbed magnetic field is in the x-direction, like equauon'(S. )s o
couples with E; due to the oblique propagation. The perturbed field is expres

* B =(B,,0,0) (5.48)

E=(0,E, E.). (5.49)
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Perturbations of magnetic and electric fields are related to each other. and are
expressed as
- 1 - -
By = —(kyE. — k| E;) (5.50)
© )
by use of Maxwell’s equation.
Plasma responses are calculated as in the preceding section. The calculation
is straightforward, but a little lengthy. The explicit derivation is shown in
appendix 5A. The perturbed current in the z-direction is obtained as

= iminig (w0 + |y Dk, i

J. = 5.51
‘ B2 ky ’ ©-D
where w,; is the ion-drift frequency,
T;
Wy = ——T—ew*. (552)
Ampere’s law, OB,‘/ay = /., combines the magnetic and electric
perturbations as
é.\' _ _(w+|(:)*i|) E:‘ (5.53)
kyvy

This relation shows that the magnetic component becomes noticeable if the
phase velocity is in the range of Alfvén velocity, |w/kjva| > 1. The dispersion
relation is given as
5 s 2 00— w) (o + o)
w° — ww, — kjc; = ) .
kjvy
Equation (5.54) describes drift branches (5.43) and the electromagnetic branches.
In the electrostatic limit, |w/kjva|l <« 1, equation (5.54) reproduces the
dispersion relation of the electrostatic drift waves. In an opposite limit,
lw/kyval > 1, it provides the drift-Alfvén mode. In the limit of lw/kjval > 1,
the relation |w/kjcs| 3> 1 holds, because the sound speed is much smaller than
the Alfvén velocity for the parameter of our interest, 8 « 1. Neglecting the
kjc? term in the left-hand side, one simplifies equation (5.54) as

(5.54)

(@ — )@ + wlwg| — kKv2) = 0. (5.55)

In addition to the drift wave, w >~ w,, two other modes are obtained. The

electromagnetic branch, in the small &y limit, becomes the mode propagating in
the direction of the ion diamagnetic drift,
T.

©w=-—w, (5.56)
7,

In a large ky limit, |kylvs > ., the shear Alfvén wave is recovered. The

dispersion relation, which is obtained from equation (5.54), is illustrated in
figure 5.7.
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Figure 5.7. Dispersion relation for the drift wave and drift-Alfvén wave.

Appendix 5A Drift-Alfvén Wave

Equation of motion for electrons in the z-direction is given as
(5A.1)

—iwmenl,f/‘,_z = —-eneE~“ —ikyT,n, + en, Vy,. By.

Neglecting the electron mass, we have

rk _ iei’“ —-iV/ Eé_r .
ne kllTe lekllTe

(5A.2)

The magnetic perturbation appears through the Lorentz force.
The equation of motion for ions in the z-direction is expressed as

—iwm,-n,V,;z = e;n,-EH - ik" }/,'T,‘ﬁ,‘ + ein,-Vd,- é_“ (5A3)
The perturbed perpendicular velocity of ions is given as
7 E:\' ik\‘lei ﬁi
= ——— (5A.4)
Vis B eB n;
7= im;w :“ 3 miwk,y; T; ﬂ‘ (5A.5)
" eB? e?B?  n;

In this expression l;:'y indicates the electric field, which is averaged over the
gyro-motion of ions. (See figure 5A.1.) It is given as
Ey =~ (1 - K2p)E,. (5A.6)

The E x B velocity is nearly equal for ions and electrons. Owing to the larger
gyro-orbit for ions, the effective electric field acting on ions is smaller than that

on electrons.
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; gyro motion

Figure 5A.1. lons feel an averaged field (dashed line) owing to the gyro-motion. The

effective field is weaker than the real field (solid line).

The ion response is calculated by substituting equations (5A.3), (5A.4) and

(5A.5) into the continuity equation as
n; ki B s o ieli“,. KiT.ieE, ek Vy -
o <w - w—mi)’iT:o> [(w,, — wkp; )k} T, + om T, Tm,-BVJ
(5A.7)

Keeping the first order correction of the finite-gyro-radius effect, k_‘z.p,z < 1, we

obtain the ion density perturbation as

-1
Yi T:O)

~ 2
ni ki
AL [

wm;

nio i
ieEy  kiT,ieE, ek Vi =
X | (e — (0 + w)k2p? 2 1222 Thildig .
l:( ( kypi )k_‘,Te wm; kT, wm;
(5A.8)

In the electrostatic limit, this is reduced to equation (5.41) if the finite-gyro-

radius effect is neglected.
The charge neutrality condition, n./ne = f;/n;, with equations (5A.2) and

(5A.3), gives the relation as

i kZCZ. 1 E
1 I ™ 2 2| teLy
— Wy — * k : -
{w w » + (v + w,) lp,}k)‘n
! 00— 0t (0 o] = )15 | Te0Bs (5A.9)
i = - — Wy Wy — |Wyi| — W . .
‘ ’ w? | Tkk

In a derivation of equation (5A.9), E. is expressed in terms of E,. and B, by

use of equation (5.50).
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The ratio of the magnetic perturbation to the electric perturbation is given
from Ampére’s law. The perturbed current is calculated as

V- J, ==V -feng(Vie — Ve )& + eno(Viy — Ve )y} (5A.10)

The divergence of net current vanishes, because the charge neutrality condition
holds. Owing to the finite-gyro-radius effect, the divergence of the current in
the x-direction remains as

d .
Vo {eno(Vix — Ve )&) = —e——k;p! —. (5A.11)

The divergence of the perturbed diamagnetic current is given as

minik,w ~

V.L * {eno(vi.\‘ - Ve.,\’)i\/} = B2 E}». (SAIZ)

Substitution of equations (SA.11) and (5A.12) into equation (5A.10) gives the

parallel current as

- oming (o + ok Dky =
G min i@+ 0Dk 5A.13
z B2 k" } ( )

Substituting equation (5A.13) into Ampere’s law, 3B, /0y = woJz, we have

B uom.:n,- (w+ Iw*,‘|) E."‘» - (w+ |L:)*I|)E~“ (5Al4)
B* ky ' kjvg

x =

Combining equation (5A.14) and equation (5A.9), we have the dispersion
relation as
kycy

2.2
{w —w,— — +(w+ w*)kip,;}
w

kic ;
i Cs ] (w + iw*,l). (5A.15)

=w[w—w*+(w*~lwul—w)z)2— s
Noting the relation ¢? « vi for the parameters of our interest, 8 < 1, the
right-hand side of equation (5A.15) is simplified as

w(w — ) (@ + |wl)
klvl
v

If the finite-gyro-radius effect in the left-hand side of equation (5A.15) is
neglected, k2p} < 1, equation (SA.15) becomes

kic? -
(w_w* B L) _ w(w—w)(w+ lw*il). (5A.16)
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Appendix 73

Equation (5A.l6) provides the dispersion relation for the low frequency
electromagnetic modes in inhomogeneous plasmas.

The dispersion relation (5A.16) provides two a

pproximate relations. The
are expressed for the slow branch, w? « k?v3, as ’

2 2
(° ~ w0 — kjc?) ~ 0 (5A.17)

and for the fast branch, w? 3 kic?, as

2 2
(@ + |w.ilw = kjvy) = 0. (5A.18)

Equation (5A.17) corresponds to the drift wav
es, and the latt 1
represents the drift-Alfvén waves. crereqution GALY




Chapter 6

Low Frequency Instabilities in Confined
Plasmas

In chapter 5, dispersion relations of modes are discussed. Various plasma modes
can be excited by a small amount of external perturbation, if the spatio-temporal
structure satisfies the dispersion relation. In inhomogeneous and nonequilibrium
plasmas, modes can be spontaneously excited, and violate the symmetry of the
mechanical equilibrium state. Such a mode is called instability. The propagating
pattern exp(ik - & — iwt) grows exponentially in time if the imaginary part of the
frequency, w = w, +1iy, is positive. Unstable modes are expected to appear at a
high level in fluctuations. Owing to this reason, much work has been devoted to
the linear stability analysis of various plasma modes. If one tries to account for
all of the geometrical effects in an experimental setup, a variety in theoretical
analyses on plasma instabilities would be seen (as was the case in the literature).
Since inhomogeneity is one of the origins of plasma instability, an analysis in
a complex geometry would be inevitable. However, we here try to reduce the
geometrical complexity as far as possible, and choose typical examples which
are relevant in confined plasmas.

6.1 Reactive Instability and Dissipative Instability

There are two typical mechanisms in inducing instability. They cause reactive
instability and dissipative instability.

The equation of motion in the presence of a small amplitude perturbation
could be rewritten in a study of the ion sound wave as

a2

5,—2v = T,n; V2V, (6.1)

min;
which yields the dispersion relation @* = c}kj. By the introduction of a
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displacement \7,-Z = 0§ /dt, the relation is rewritten as
92
Y e 2
m 3[2& = Tekusz- (6.2)

This relati i v i
direcnonat:gﬂh?e;rslslthat the restqrmg ff)rc.e, —Tekﬁlf:, works in ‘the opposite
on t placement &, like a spring. A small perturbation does not
grow in u.me but oscillates. In contrast, if the sign of the restoring force is
reversed, i.e., the force is in the direction to increase the displacement, then
gsmall perturbation grows exponentially. When there is a mechanism éivin
rise to a force in the direction of displacement, it is called reactive instabili g
Another type is dissipative instability . t}.
As an analogy to plasma instabilities, let us study the motion of a point

mass under gravity shown in figure 6.1. The surfa i ion i
ey i Ce to constrain the motion is
1
__ L2 2

= L(x + y9). (6.3)

. It is well kr?qwn .tha[ a point (x,y) = (0,0) is an unstable equilibrium
pomt. . If the posﬁnop 1s perturbed by the amount of &, in the x-direction, the
force in the x-direction is given as F, = 2mgé /L, where m is the ma;s of
the particle and g is the gravity. This force causes an exponential growth of

deviation &, with the growth rate
/28
Yo = " (6.4)

This beloqgs to a family of reactive instability.
Consider the case whfere the point mass in figure 6.1 is charged (charge
Q) and the system is subject to a uniform vertical magnetic field B (in the

> ve

<—§~>‘

Figure 6.1. Mass point on a sliding surface.




76 Low Frequency Instabilities in Confined Plasmas

growth rate

0 ™. Yo

@) (b)

Figure 6.2. Growth rate as a function of the driving parameter (a). Example of the stable
orbit (y) < y.) is shown in (b).

z-direction). In this situation, the Lorentz force modifies tht? grpwth rate. For
temporal evolution of the type exp{—iwt}, the eigenvalue w is given as

:t(Qd:‘/QZ——éwoz)

w = 5 (6.5)

where Q = QB/m. The growth rate is shown in figure 6..2.(21). An ex.ample
of the trajectory is presented in figure 6.2(b). There is a critical value for the
driving term, i

(8/L)e=97/8

and the system is stable in the region of
(8/L) < (g/L). e, yo <y =Q/2. (6.6)

This system shows a feature of dissipative instability. If there is a frictiqn
between the point mass and the surface, the equation of motion (v = 3§/9¢) is
written as ‘

—a—v = Y€+ Qu x 2 — vu. 6.7
ot

For the temporal evolution in the form of exp(—iwt), the eigenvalue w is given
as

: i Jay2 — Q2 4 2ivQ + 12
_ T QEiydy -9+ 2 ‘ (6.8)
w= 2
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Now the system turns out to be always unstable. In particular, near the

marginal stability condition, (8/L) ~ (g/L),, the growth rate of perturbation is
approximately given as

Im(w) = %\/E (6.9)

The growth rate depends on the fractional power of the dissipation rate. Even
if the friction is small, v/ « 1, its impact on the stability is prominent. This
is also characteristic of the dissipative instability.

In the zero-driving limit, y, — 0, the growth rate of dissipative mode
behaves as

2
Im(w) = 220 (6.10)

The growth rate is linearly proportional to the frictional coefficient.

In the presence of a dissipation, the gravitational energy is slightly
dissipated by the friction. Hence, the velocity is reduced. The Lorentz force
becomes less and is not enough to restore the orbit to the original point even
in the region (g/L) < (8/L).. The point mass gradually slides down the
slope, releasing the gravitational energy. This is an example of a mechanism
where a dissipation can cause instability, and cause an exponential growth of
the perturbation with a symmetry breaking [2.1]. The growth rate and typical
trajectory are illustrated in figure 6.3.

growth rate

; .
0 Ye Yo

(a) (b)

Figure 6.3. Dissipative instability exists in the region of weak gradient, Yo < ¥.. Growth

rate against the driving parameter (a), and a typical example of a trajectory for the case
of ¥o =y, and v == y,/100 (b).
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Figure 6.4. Motion of plasma in the direction of the gradient of the magnetic field. A
cross-section of the plasma tube is shown. In this figure, plasma is compressed if it is
moved upward, and expands when moved downward.

The dissipative instability is important from the viewpoint of nonequilib-
rium thermodynamics. A reactive instability usually has a larger linear growth
rate; however, linear reactive instabilities could be eliminated by a proper choice
of the plasma configurations [2.7-2.11]. Nonlinearities may play a dominant role
in stabilizing such perturbations. In contrast, in a dissipative instability the dis-
sipation may not be unaltered but could be enhanced by the development of
fluctuations. If this is the case, the dissipative instability could have the nature
of subcritical turbulence. This situation provides more variety in the dynamics
in comparison with supercritical turbulence.

6.2 Magnetic Curvature and Pressure Gradient

An inhomogeneity of the magnetic field strength plays a role like that of the
gravity in the model of figure 6.1. When plasma moves across a main magnetic
field, the magnetic flux in each plasma element is approximately conserved. This
nature originates from the high electrical conductivity along the magnetic field
line, which is due to the approximately free electron motion. The magnetic field
is often described as frozen in plasma [2.4, 1.6]. If this is the case, then the
cross-section of the plasma element changes as it moves in the direction of the
gradient of magnetic field strength. It is compressed when it moves to a high
field side; it is expanded when it moves to a low field side (figure 6.4). The
plasma may release the free energy when it expands. If this released energy is
wransformed so as to enhance a plasma displacement, as is the case of a mass
point on the top of a hill, then an instability occurs. The confined state of the
plasma is easily destroyed.

Owing to this nature, the influence of magnetic field inhomogeneity has long
been investigated in relation to the plasma confinement. A simplest example is
known as interchange instability [6.1]. In a real system, the curvature of the
magnetic field line is not constant, and a perturbation may be localized in a
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particular region along the magnetic field line. In the latter case, the perturbation
is called a ballooning mode [2.1].

6.2.1 Magnetic Well and Magnetic Hill

Consider a case where a magnetic field (mainly in the z-direction) is
inhomogeneous in the x-direction. The cross-section of the x—z-plane is shown
in figure 6.5, where the x-axis is taken in the direction of inhomogeneity, and
the z-axis is in the direction of the strong magnetic field. The magnetic field
inhomogeneity is usually induced by the curvature of the field line. The limiting
casé is taken as an example, where a plasma current is small and does not affect
the magnitude of the magnetic field. (This condition is approximately satisfied
in wide circumstances.) Ampere'’s law V x B = poJ = 0 provides the relation

b
Bx= —D; )2
s (ax B~> (6.11)

where the origin z = 0 is taken at the point where B, = 0 is satisfied. The
magnetic field line is expressed as, with the integration of the equation of the
field line dx/B, = dz/B., as

1/ 19B;\ ,
x==——])2z"
2\ B, dx
It is expressed by use of a curvature Ry as

1
x = 22 (6.12)
2Ry

The curvature Ry is related to the gradient of the strength of the magnetic field
as

1 1d

Ry B.dx

i The directions of both the gradients of plasma pressure and magnetic
ﬁeld strength are the key. An inhomogeneous and magnetized plasma, in an
inhomogeneous magnetic field, is shown in figure 6.6. The (x, z)-cross-section

is as shown in figure 6.5. When the plasma pressure is higher in the region
where the magnetic field is stronger, as in figure 6.6(a),

|B,]. (6.13)

Vp-V|Bl >0 (6.14)

the cotlﬁguration is called a magnetic hill. The magnetic field becomes weaker
away from the plasma. In the opposite case, figure 6.6(b),

Vp-VIB| <0 (6.15)

it is called a magnetic well. The field becomes stronger away from the plasma.
In the case of figure 6.6(a), the system has been known to become unstable.
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l > 7
J — 5 | T~

V|B|i

Figure 6.5. Inhomogeneity of the magnetic field. The gradient of lht? strength of the
magnetic field is closely related to the curvature of the magnetic field line.

low pressure low pressure

Ve {8l YVp
B

v|B|
B M

high pressure high pressure

(a) (b)

Figure 6.6. The case of a magnetic hill (unfavourable curvature, (a)) and magnetic well

(favourable curvature, (b)).

6.2.2 Interchange Mode

Instabilities which appear under the configuration of a magnetic hl:
(figure 6.6(a)) are known by the name of interchange modes [6.1]. The growt
rate is evaluated in the following. . o o o
Consider the case where a main magnetic field is in t'he z-direction wFth its
gradient in the x-direction. The plasma pressure is also 1ph0|n0gene9us in the
c-direction (figure 6.7). This system is subject to a potential perturbation of the

spatial form

$ = ¢ expliky).

The perturbation is uniform along the magnetic field line. The consequen.cetl(])i
this perturbation is explained in figure 6.7. The E x B. motion a[;pears in
x-direction. This flow causes a temporal change of density of the form

n = nyexp(iky —im/2).

A perturbed amplitude n, is related to the perturbed potential through the
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—-dJ /x| +

< |

Figure 6.7. Current flow pattern (vertical arrows) associated with the potential
perturbation é. Dotted lines denote the nodes of ¢. The magnitude of J, depends
on x, and divergence of the perturbed diamagnetic current V . J appears. (Signs of ¢
and =V - J are denoted by + or —. They have the same sign in this case.)

continuity equation, which is written as
31/dt = (dny/dx)(iké/B)

when the density is inhomogeneous in the x-direction. If this density perturbation
appears, a perturbation in diamagnetic current is also associated with it as

Jo = —ikB~(T, + T))i.

A divergence of perturbed current remains, because the magnetic field B is
inhomogeneous in the x-direction. The divergence of this diamagnetic current
is given as
. k2 (d 1Y dng -
0 fdx=—(—=) (T.+T dig. 6.16
«/3x B(de)dx( +’)/ ¢ (©16)
The growth rate is evaluated from this relation equation (6.16). The
divergences of electric field and perturbed diamagnetic current are related as

b
EOF_LEVJ_-E_Lz—V.J (6]7)

where

£ =c* v} (6.18)
is the perpendicular dielectric constant in a magnetized plasma [2.3,2.4]. (Notice
that eg(e; — 1)3E/0t is a polarization current in the magnetized plasma.
Equation (6.17) is derived from Maxwell’s equation and the charge conservation

condition.)  Substituting equation (6.16) into equation (6.17), one has the
equation of motion,

0 ik E ral do - +T)/ dtd (6.19)
EnE — (1K, y = —— —_ Y ; . .
R T T\ ) @ ¢
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An electric field and a potential is related as E, = —ik,$. Replacing E, by
—ik‘\‘q.ﬁ in equation (6.19), one has

3¢ k2 /d 1 ) dnop :
=—— | ——= | —(T,.+T,
f0fL3n B (dx ) ax et 1o
or 52 2
92 . ;o=
9 G ' 6.20
%)tz LI)LMd) ( )

Here, L, and Ly are the gradient lengths of pressure and magnetic field,
respectively,

LLI):——V;E andzll—w=—ZB§ (6.21)
Equation (6.20) provides the growth rate y as
2 B c?

Y=y = L,JLM. (6.22)

This result shows that a potential perturbation grows exponentially, if the
sign of the coefficient of the right-hand side of equation (6.20) is positive, i.e.,

1

- 0. (6.23)
LpLM

The perturbation is unstable if a magnetic field becomes weaker in the direction
in which the plasma pressure decreases. Under such a situation, a magnetic
field is said to have a bad curvature (unfavourable curvature). In contrast,
if the magnetic field becomes stronger as the pressure decreases, L,Ly < 0,
the system is stable. In this case the magnetic field has a good (favourable)
curvature. As an example, one may imagine plasmas that are confined by the
dipole field of the earth (or stars) (figure 6.8). If a ring of plasma is formed
around the equator plane, the magnetic curvature is favourable for the inside
part of the ring, and is unfavourable for the outside part.

In the case of interchange instability, it is possible to show that the force
is in proportion to the displacement. The perturbed clectric field is rewritten in
terms of the E x B velocity, VE*B = E, /B = —iky@/B. Then equation (6.19)
is rewritten in the form of the equation of motion

0 Ex m'n"C\Z' xB
m,‘n,é—;v( B _ -IT,L—;E‘E = F, (6.24)
where EfXB is the displacement by the E x B motion
gExB - / dr vE"B (6.25)
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Figure 6.8. Plasma (shaded portion) confined by the dipole magnetic field of a star

(‘-~~C;;‘TT Low Pressure  ¥]B|\)
LN !
tor ] Jk High Pressure
@ (b)

Figure 6.9. Rayleigh-Benard convection (a) and the interchange mode

?n the flow is shown by the arrow, and the iso-temperature (
illustrated.

(b). Perturbation
pressure) surface is also

(Ijt‘ 1s] shown 1nEfgu§lion (6.24) that the force Fy is in proportion to the
.flSp aceme.nF & in the x-direction. The force increases the displacement
if the condition L,Ly > 0 is satisfied.

. ﬂ'l?l;lsdmslabllll‘ty shows a close analogy with a Rayleigh-Taylor instability
: .u1 | dynamics [6.2].  When water is heated from the bottom und
tﬁravnauona! force, the thermal expansion causes an upward flow due tocrthtil
;];l;)y[:;ii]i]ﬁiz;ed&‘?‘)‘ A convecltion roll is formed. In this case, the viscosity
e ther unsmbleuc..flo]r; tend to impede thej convective motion. A roll pattern
noomes U1 Cmical] l;eltf:mperature gradient exceeds a threshold, which is
- ay elghAnumberA If water is heated from the top, the
) a tf:mperalure structure ‘is stable. A combination of temperature gradient
and gravity causes a Rayleigh-Benard convection. In a plasma, a comtgwinati(?n

Ofl)lessule gradien( and effe(,tl € 1orce (1 O the g € (l g Zlillell causes
A% t Ic ue t h ma neliC h i

X l a

an E X B convection.




84 Low Frequency Instabilities in Confined Plusmas

6.2.3 Finite k, Effect and Dissipative Instability

Next we consider a case where a perturbation is not uniform along a field line.
In the example of section 6.2.2, no variation is introduced along the magnetic
field line. In this section, it is illustrated that parallel dynamics is important for
plasma instabilities.

The mode number vector has a parallel component to the magnetic field
line,

k=(0,k ky
and a plasma is perturbed in the x-direction as
& = Eexp(iky + ikz — iwt).

In the presence of small but finite collisions, the equation of electron motion

along the field line becomes m,dV,/dt = —eEy — m,v,;V,y. A perturbed
electron current along the field line J; = —n.eV,; is given as

- n.e? -

Jy = : E; (6.26)

e (Vi — 1)

where v,; is the electron—ion collision frequency. (If one takes a stationary limit,
w — 0, this relation reduces to the usual Ohm law, :I" = (neez/mevv,-)E".) By
use of the relation

Ey=—-0A,/0t = V¢

the perturbed current is expressed in terms of electrostatic potential as

I\
- w? €2 k -
7, = (1 o ) S N—" (6.27)

— — :
wF v kict | ome (@4 iv)

where the relation between current and vector potential,
[t()J“ = kiA” (628)

is used.

In this case a bending of the magnetic field line with the nodes causes
an additional restoring force and reduces the growth rate. The reduction of
growth rate is understood from the observation of a pattern of perturbed current
(figure 6.10). Since JN is not constant along the field line, but changes its
direction within a wavelength 1/k;. the divergence of Jy is compensated by
the perpendicular current Ji J ~ (k"/kL)jw The Lorentz force J; x B is
directed in the direction so as to restore the deformation in the x-direction. Its
magnitude is given as

,)
m, (w+iv,)ky

>\ - )
w w3, n.e’ ki B -
—

 + v, k1 c?

(J. x B), = (1+
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Figure 6.10. Penurbed magnetic field line and the current in the y-direction (dotted
arrow). Restoring force F, (thick arrow) appears. '

={1+ w wp nee lkl‘fBz ~
® + v, k_zLCZ m, (w+ ive,-)ki ‘/x (629)

wherg V. isthe ExB Yelocily due to the fluctuating field, —ikg/B. Adding this
restoring force to the right-hand side of equation (6.24), the dispersion relation

is now given as
2 =1 2
) 2
RN ) 0 @,

' _w 2
w + i, kic2  + v, kic2 kjvy =0 (6.30)

w? + Yé - (l +
2 —_ 2 . .
where i = c:/L,,LM: Ip.the limit of k = 0, it becomes equation (6.20).
We first study a limiting case of long perpendicular wavelength, t.e.
)
o > 1. (6.31)

(An opposite limit is discussed in the next subsection.)

: . . In thi
dispersion relation equation (6.30) is simplified as Is case, the

2 2 il)c.,‘ k_ZLCZ
w”+ v <1 - p” —-—wz kﬁvi =0. (6.32)
p

The leading term with respec issipation i
\ spect to the dissipation is retained
electric resistivity, Byweofade

n= uoveiczw;z

equation (6.32) is rewritten as

5 5 ink?
w® + g —-( ——l)kzv2 =0
o ) K1V . (6.33)
- S?Iu‘atlor:% (6.33) predicts existences of both reactive and dissipative
Stabilities. A reactive instability is first i issipative i ili
i i A 1€ y rst explained, and a dissipative instability
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Stabilizing effect of parallel wave number. In a collisionless limit, the dispersion
relation (6.33) reduces to

o’ +yg —kjvy = 0. (6.34)

The growth rate y is shown by the dashed line in figure 6'].1' The rel‘aFion (6.34)
shows that there is a critical driving power yO2 for a reactive instability. In the
absence of electron collision, v,; /w — 0, equation (6.34) predicts that the mode
is stable (i.e., w is real), below a critical condition

Yo < lkylva. (6.35)

This result shows that the reactive instability is suppressed if.th’e parallel mode
number is large enough. Substituting the explicit form of driving term y,, we
obtain a stability limit, equation (6.35), in the form

C.\-/\/L[,LM < |k|!|UA.

If one introduces the ratio of sound velocity to Alfvén velocity, the stability
boundary is rewritten in terms of beta value. For a plasma with smg17y charged
ions and T, =~ T;, the ratio of velocities is rewritten as (c;/va)” = B/2.
Equation (6.35) is read as

B < Bc =2L,Luk;. (6.36)

This relation is often referred to as a beta limit in plasma confinements [2.1].

\m; BL,

Figure 6.11. Growth rate as a function of the pressure gradient for a fixed value of ky.
The reactive instability is shown by the dashed line. Below the critical pressure gradient,
B/L, < B./L,. the dissipative instability remains.

The criterion (6.36) is often called the ideal MHD limit. This is based on .the
fact that the parallel electric field nearly vanishes, when the d.lsperSI‘on relaupn
equation (6.34) is satisfied. This is seen as follows. In a limit of high density
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and small electron inertia, equation (6.31), the perturbed current, equation (6.27)
is simplified as
212

ik
~ K
Ji= —=V¢.
Wio
Rewriting the current, J|, in terms of the vector potential A, by use of
equation (6.28), this relation is equivalent to the equation

Ey=-0A4,/0t - V¢ ~0.

In other words, the static and inductive electric fields balance. This is because
the parallel conductivity is large, so that the net parallel electric field vanishes.

Dissipative instability. A small but finite dissipation can cause an instability
below the threshold condition of an ideal MHD instability, equation (6.35). A
stability is obtained by a structure of perturbed current along the field line as
is illustrated in figure 6.10. If this perturbed current is impeded by a certain
mechanism, such as resistivity or current diffusion, then the resultant restoring
force :Il x B is reduced. This becomes insufficient to provide the stability. The
same situation as in figure 6.3 occurs in magnetized plasmas. When the electron
collision is finite, a dissipative instability remains in the region yo < Ye = lkjval
[6.3].

Near the marginal condition y, ~ |kylva, equation (6.33) is approximated

as R
ink{
W Ly g, 6.37)
How
The eigenfrequency w is complex, and the relevant growth rate is estimated as
k2 2/3 k 2/3
Im(w) = ("—*) w’=vly" (i) : (6.38)
Ho ) Wp

The dissipative mode has a growth rate which has the fractional power of
a smallness parameter v,;/yy. A small but finite dissipation can induce an
instability with a considerably large growth rate. The growth rate of a dissipative
instability is drawn by the solid line in figure 6.11.

The importance of dissipation is illustrated in equation (6.38) by taking
an example of the electron—ion collisions, i.e., the resistivity. Other types of
dissipation, e.g., a current diffusivity [6.4] and Landau resonance [2.4], have
also been found to be influential in causing various instabilities.

6.2.4 Short Wavelength Modes
In the limit which is opposite to equation (6.31),

2
@p

=55 <1 6.39
kicz < ( )
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the stability of a short wavelength limit is given. This Iimit‘ ls alsp C(’.,lllcd an
electrostatic approximation. (This condition is more casily §at15h§d in dilute (or
low pressure) plasmas. Hence, it is sometimes called a limit of dilute plasmas.)
In this case, the dispersion relation (6.30) is simplified as

w
i—— e ) (6.40)

b + 2
w” R S
Yo w4+ v, k}_c2

Reactive instability. We first study the reactive instability. In the abs:ence of
electron collisions, v,; /& — 0, equation (6.40) predicts that the mode is stable
(i.e., w is real) below a critical condition

wp

——kyv
kLC oA

(6.41)

Yo < Ve =

The stability boundary for the reactive instability is given in figure 6.12.

k104 LS
Yo Stable BC i
(Dissipative Instability) Lp Unstable
! Unstable
(Dissipative Instability)
0 k_]_C/(‘op klc/wp

Figure 6.12. Stability boundary of the interchange mode for fixed pressure gradient (left)

and for fixed &, {right).

When the electron collision is finite, a dissipative instability appears in
short wavelength modes. The growth rate remains in the region yo <Y =
lkyval. Keeping the first order correction of v,;/w, one expands the dispersion
relation (6.40) as

2 . 2
w 1v,;, W 5
2 2 /7 2 2 er r k_v_ =0
o + vy — =skiva | ¥ — 3 3kiva .
(0 k2 c? hes w kic

Near the marginal condition yp = y. = lwpkyva/kycl, itis approximated as

. 2

Wei %0 j2y2 o 2

2+ “kz’ézkﬁuA_o. (6.42)
ES

w

The growth rate is estimated as

Im(w) = vy (6.43)
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In the limit of an infinitesimally weak driving source, vw — 0
equation (6.30) provides the dispersion relation

vy (e Y (6.44)
w v, Yl , '
Yo kjvaw,

(This approximate relation is derived by the help of the condition o] K o, 1.e.,
Yo K kjvaw,/kic.) The dependence Im(w)  v,; y02 1s seen to be the same as
in equation (6.10).

In the short wavelength limit, there remains a reactive instability even if
the condition (6.36) is satisfied. It has been considered that instabilities with
short wavelength causes a gradual deterioration of confinement, and that they
may not impose a drastic limit. Based on this conjecture, the condition (6.36)
is considered to be a formula of a limiting plasma beta-value.

What is really important is the level to which these instabilities grow. The
nature of turbulence, which is the evolution of these instabilities, is discussed in
chapters 7-15.

6.2.5 Magnetic Shear

The results equations (6.35) and (6.41) indicate that the perturbation may become
most dangerous if it is uniform along the field line, ky = 0. Efforts have
been made in experimental research to eliminate the conditions which cause
perturbations with ky = 0. One typical example is an introduction of magnetic
shear as shown in figure 3.3. The expanded view is illustrated in figure 6.13.
The direction of magnetic field lines inclines slightly from one magnetic surface
to another. The magnetic field has the form

oo (s
\ "

(6.45)
in the vicinity of a mode rational surface, which corresponds to the surface x = 0
in equation (6.45).

In this magnetic configuration, the mode number in the direction of
magnetic field is given as

ky=(k-B)B™' =k,x/L, (6.46)
against a perturbation with the phase
exp(ik,y).

The magnetic field is said to have a shear, and L; is called a (magnetic) shear
length. The mode number along the field line, ky, vanishes on the surface
x = 0, the mode rational surface. If the magnetic field has a shear, perturbation
is localized in the x-direction near the surface k- B = 0.
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Figure 6.13. Sheared magnetic field. The dotted line indicates the mode rational surface.

In the presence of magnetic shear, the eigenvalue equation, such as
equation (6.30), becomes a differential equation with respect to the variable
x. This kind of procedure will be discussed at the end of this chapter.

6.2.6 Ballooning mode

The curvature of the magnetic field line is not always uniform along the field
line. In the case of toroidal plasmas, the magnetic field often varies as B R™!
as is shown in figure 6.14. The curvature is bad on the outside of the torus,
and is good inside. As a result of this, if one plots the driving force of the
interchange mode V p - VB along the field line, it oscillates around zero with
the period of 2rgR. Here we simply write the variation of the curvature as a
sinusoidal function as

¢2/L,Ly = ygyfcos(z/2mqR) — h) (6.47)

where you is the peak value of the driving term, and A is a small value. A
positive value of h corresponds to an average magnetic well that makes this
average negative.

We take the simplest case, where the driving term is given by a sinusoidal
form equation (6.47). The mode number along the field line ky is replaced
by the operator —id/dz, and the eigenvalue equation, which is equivalent to

equation (6.34), turns out to be a form of differential equation as
, d? 5
u;d—z—zn//(z) + Yoy icos(z/2mqR) — h} (2) + 0 ¥ (2) = 0. (6.48)

When ¢2/L,Ly is constant, ¥(z) is given by a single Fourier component and
the eigenvalue w is given by equation (6.34). The solution of equation (6.48),
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@ (b)

Figure 6.14. Toroidal geometry (a) and the magnetic curvature that varies along the

magnetic field line (b). The average is shown by the dotted line in (b). Length z is
measured along the field line in (b). ‘

which is periodic with the period 27gR, is given by the Mathieu function

V(2) o< ceo(z/4mqR, 8(qR/v,)). (6.49)
The eigenmode is given, in the strong drive limit, as
2 _ 2 va
w”=—(1=h)yg + zanVOM Yom > va/2mqR (6.50)

and in the weak drive limit as

wl = h — l M ’ 2 2
B VA Yom | Yom You K va/2mgR. (6.51)

Thc result equation (6.50) indicates that a simple estimate for the instability
condmgn derived from equation (6.35), Yo > Kjua, can be used in evaluating
the region of a strong ballooning instability with the help of the estimation of
ky = 1/q R and the choice of the peak value yo > yu [2.1 ]. This simplification
provides an estimate for the stability boundary equation (6.36) as

_ L,Ly L,
< P = o !
B <8 7R "R (6.36")
where the relation Ly =~ R is used [2.1, 2.7).
The (reactive) ballooning instability disappears if
v
Yom < V2h—2 (6.52)

2ngR
is satisﬁc?d.' This is called stabilization by use of the average magnetic well .
. A '51mllar argument as for the interchange mode applies to the dissipative
fnstgblllty of the ballooning mode. The nonlinear dissipative ballooning mode
Is dllscussed in chapter 10. The role of the magnetic shear, which also increases
ky, is discussed in the literature [2.8,6.5] and is not repeated here.
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6.3 Drift Instabilities

When the magnetic curvature vanishes, the interchange mode becomes
marginally stable; yp =~ 0. Under such circumstances, there arises a drift
instability, which is caused by the plasma inhomogeneity. Drift waves have
been subject to special attention in the research on plasma confinement. This is
because this branch of oscillation appears due to an inhomogeneity of the plasma,
and can become unstable in the presence of various dissipative mechanisms.

In the absence of dissipation, this mode is purely oscillating. The mode
is described by an electrostatic model. The dissipation which impedes the free
motion of electrons modifies the phase relation between electron density and
electrostatic potential as
i:(l—iad)ff. (6.53)
n, T,

¢

=

Here 8§, is a small but finite numerical factor, indicating a weak delay in the
electron response. This is sometimes called the delay (deviation) from the
adiabatic_response. As was discussed in the previous section, the ion response
function is given as

i weed (6.54)
n; o T, '

The quasineutrality condition, i, = i;, provides the dispersion relation as
w = w, (1 +18y) (6.55)

showing that the delay in the electron response causes an instability if §; > 0.
In order to see the role of the inhomogeneity in the sign of phase delay,

the effect of a small number of collisions is presented as an example. When

there is a small but finite friction force on electrons, —m_n_ v, the equation of

motion of electrons is given as

—en E. —ikyp, = m.n.vo,;. (6.56)
By use of the continuity equation, 87/9t + Vi - V; +nV -V = 0, the equation
of the parallel electron motion yields the response function 7,. Equation (5.24)
is rewritten as

- -1~ -
Mo (14t @;w—ﬂ%%ﬂ>@ (6.57)
H, kﬁ“fhe T, k“ Vihe T.

where v, is the electron thermal velocity, fhe = Tmz;j‘. A finite delay 8, is
explicitly given as

V(wy — )

h )
k]l Urhe

84 = (6.58)
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The necessary condition for the instability, 8, > 0, is realized if w, > w holds.
In the absence of inhomogeneity, ie., w, = 0, 8, is always negative. The
.dissipation, like electron—ion collisions, can induce a growth of fluctuations in
inhomogeneous plasmas. This is the reason why the drift wave has been thought
to be particularly important.

It is noticed that this kind of phase delay is caused not only by electron
collisions but also by other dissipation mechanisms (e.g.. electron Landau
damping).

A simple estimate of drift wave dispersion, w ~ w,, predicts that the phase
difference 8, vanishes and the stability is marginal. (That is, the determination of
the stability is subtl&. This is one of the reasons that there is a lot of literature on
the stability analysis of drift waves.) There are, however, abundant mechanisms
that make the real frequency lower than the drift frequency. If the wavelength
perpendicular to the magnetic field is comparable to the ion gyro-radius, the
effective potential, which the ions feel, becomes smaller as is illustrated in
figure SA.1. The effective potential ¢ is given as

¢ = Io(k} p}) exp(—k2 p)p (6.59)
where Iy is the zeroth order modified Bessel function of the first kind. It is

simplified as (1 —ki,o,-z)d; in the limit of small finite-gyro-radius effect. The ion
response is then given as

ﬁ,‘ Wy 5 6(]3 sz? eg;
L A T 2200 A0t AT N 4
n w ¢ LPi) T, + w T, (6.60)
The real frequency is given as
/ 12 .2\
_ 2 2 RS
w=ow\l—-kip + = (6.61)
wy
and can become lower than w,. The growth rate is given as
y Uwf k2 52 kﬁf’.\;
=== | kip — . (6.62
kv, ! w? , )
The mode is unstable for the case of & p2 > kiciw? or
kyk p? > kyL,. (6.63)

An instability is possible for smaller parallel mode number.

This instability is also influenced by the magnetic shear. There is abundant
literature.
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6.4 Variations

In toroidal plasmas, the geometry gives rise to variations of mode. From the
physics points of view, a similarity is observed among various instabilities.
Some are explained here.

6.4.1 Trapped Particle Mode

The trapped particles influence the low frequency instability [6.6]. As is
discussed in chapter 3, trapped particles are localized near the low field side
of the torus. The motion of the guiding centre is illustrated schematically in
figure 6.15. Trapped particles do not freely move along the magnetic field
lines, and they respond to the perturbed potential in a different way compared
to transit particles. Due to this difference, there arise various instabilities
driven by trapped particles. The number density of transit particles is given
as Myransir > Ne(1 — V2¢) and that of trapped ones is

Rerap = nev2e (6.64)

where ¢ = r/R is the inverse aspect ratio.

One variation is seen in a reactive instability. The response in a collisionless
limit is shown. Trapped electrons are localized to a particular poloidal angle,
and the parallel motion along the field line is prohibited. When a potential
perturbation such as the drift wave is considered, the transit electrons move
freely so as to satisfy the Boltzmann relation. In contrast, trapped particles do
not move along the field line, and the response is similar to the one in the
interchange mode. The perturbed density of trapped particles is expressed as

T o fre— e 8 (6.65)
ite w Wy 1

The denominator w — wyy, includes the Doppler shift owing to the toroidal drift
of trapped particles, wy, = k;Vp,. A similar relation is obtained for trapped
ions.

Mt @ ¢ (6.66)
n, w—wy T, '
We take a simplified case of 7, =~ T;, and use the relation wy; = —wny.. A

simple example is an extremely low frequency mode, |kjvpsi| > w as well
as |kyuire]l 3> . In this circumstance, the response of transit ions is also
approximated as the Boltzmann response, i.e.,

Niransit.e ~ (l _ \/2-8')%? (667)

Ne

Rtransit.i ~ (1 - ﬁg)eT_(b (6.68)

ne
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of trapped particles trajectory
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poloidal angle
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Figure 6.15. Schematic picture of the trajectory of trapped ions (a). Guiding centre
motions of trapped ions (thick solid line) and untrapped ions (thin lines) are given in (b).
Trapped particles move in the trough of the magnetic field, 8 ~ 0, while transit particles
move along the field lines.

The charge neutrality condition is rewritten as

21 = V2e) + V22— e~ (6.69)
w

— WMe W+ wpe

The charge separation is not resolved, and a reactive instability appears as

Im(w) >/ V2ewpy w, — W}y, = &' Jorew,. (6.70)

Like the interchange mode, this instability appears because the directions of
the diamagnetic drift and the grad-B drift are in the same direction for trapped
particles. The trapped particles are localized in the region where the magnetic
curvature is bad.

This indicates that, if the drift direction of trapped particles is reversed,
then this strong instability is suppressed. Drift reversal is possible, e.g., by
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the modification of the g-profile and the shape of the cross-section, or by
strong inhomogeneity of the radial electric field [6.6-6.8]. These influences
are discussed later.

Trapped particles also induce a dissipative instability. In the presence
of collisions, trapped electrons have a larger collision frequency compared
to the transit electrons. This is because the small pitch angle scattering
leads to detrapping. The effective collision frequency of trapped particles
is 1/e times larger than transit particles. The ratio of the number density,
Aprap Miransit == V2¢, is smaller than unity. However, the collision frequency
is enhanced by the factor 1/¢, so that the contribution from trapped particles to
a mode due to collisions is larger. A small but finite number of collisions for
trapped particles (but neglecting those for transit particles, for simplicity) leads
to the dispersion relation (6.70) as

. w
20 -V2e) + V2e—m—m e - V2e————  ~ 0 (6.71)
W= Wpe T Wepre W+ Wpe + Wepri
(Vesrei = v i/€). Even in the absence of the effective bad magnetic curvature
wyew, => 0, an instability remains. The eigenvalue is estimated as

,
w=._\/;w*+i(i_‘_“:__um‘i). (6.72)
4vp1e

Historically, this is called a dissipative trapped ion mode.

When the phase velocity is higher, |kjvi| < w, the response of transit
ions deviates from the Boltzmann response. In the region of wavelength
kyvinil € w < lkjupel, the mode is the drift wave, and one must study
the effect of trapped particles on the drift wave. (Figure 6.16 illustrates the
regions of the trapped ion mode and trapped electron drift modes.) The drift
waves w = w, can be destabilized by the dissipation of trapped particles which
are responding to the perturbed potential. This type of instability is called a
dissipative trapped particle instability. and a lot of variations have been reported
depending on the various collision frequencies.

6.4.2 Jon Temperature Gradient (ITG) Mode

The ion sound mode is destabilized by the ion temperature gradient (ITG) [6.9-
6.11]. When the ion temperature is inhomogeneous in the x-direction (figure 5.1)
while the density is homogeneous, the response of ions to the low frequency
perturbation is calculated (figure 6.17). In this situation, the diamagnetic drift
vanishes, but drift heat flow in the y-direction exists. In other words, hot ions
and cold ions are moving in opposite directions in a stationary state. This
instability appears due to the interactions of colder ions and hotter ions.
We consider the case

lky Ui [ K o K lkyvinel
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Figure 6.16.  Classification of instabilities driven by density gradient.  The

parameter region in the density gradient and relative phase velocity is shown
the trapped ion mode and trapped electron drift modes.
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. e presence of l'he ITG, the ion pressure perturbation due to drift heat flow

1 appears, and the ion response is given as

~ k?. 2 T
oo K (1 wm) e¢

| no ? w /T, (6.73)
f where

Wy = -k—‘ d—TI- 6 74

eB dx (6.72)

The xnﬁ'uenceTti)f the temperature gradient of ions is coupled with the parallel
ion motion. ion s 202 Jw? s ified i i
e 1on sound term kjvj/o* is modified in the ion response.

The electrons have the Boltzmann response, Re/ng = egf)/ T., and the dispersion
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relation of the ion sound wave is modified as

kZCf (1 B m_n) . (6.75)

Il
w? w

1 =

This cubic equation in w of equation (6.75) predicts a reactive instability

for 5
WxTi|
> —. (6.76)
kycs 33
The growth rate is estimated as
Im(w) = o'} (kye,)?? with Re(w) ~ w!7 (kye,)?? (6.77)

(for |w.ri/kycy] > 1). This instability naturally causes the mixing of hotter
ions and colder ions, so that it is also called the ion-mixing mode. Note that
(6.76) and (6.77) are valid so long as the condition |@/kyvini| 3> 1 is satisfied.
The numerical factor 2/3+/3 in equation (6.76) should be taken as an order of
magnitude estimate.

Figure 6.18 shows the growth rate and real frequency as a function of the
parallel mode number. This mode becomes unstable in the long wavelength
region. In the limit of large parallel mode number, |kyjlcy > |w.ril, the
dispersion relation equation (6.75) reduces to that of the ion sound mode.

4 T T =
9 .-t
o/ l(—l):r' -‘_-"
Lot 1 Im((.l)/ |(l)*7‘|)
0 v
]. .."""---.<: --------
i Re(a/ lm,,rl)\\,\}
-4 L L L )
0

ke loup | 4

Figure 6.18. ITG mode (branch 1). Growth rate (solid line) and real frequency (dashed
line) are shown. Branches 2 and 3 indicate the ion sound wave. The stable branch is
shown by the thin dashed lines.

The density gradient is known to stabilize the ITG mode. The stability
boundary, which is determined by the competition between density gradient
and ion temperature gradient, is explained. In order to avoid the limitation
|w/kyvei| 3> 1, a result based on the kinetic theory is used for the dispersion
relation as [6.9]

T, Wy T, 2 3 Vi WxT|
= SZ(v)) —vi Z (v 2 - ) 78
1 T’_(1+y,Z(>/)) iZ(yi) ” +T’ [.», +(y, 2)2(,»,)} ™ (6.78)
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wh;rg yi = (f)/\/ilk”lv,h, and Z(y;) is the plasma dispersion function. In
deriving equation (6.78), the electron response is assumed to be the Boltzmann
response. In the limit of |w/kjuy| > 1, an asymptotic relation y; Z(y;) ~
—1—=y7=/2- 3_\',_4/4 holds, and equation (6.78) is simplified as '

— kﬁTe (l _ Wy W
wm; w ) * o (6.79)

In the absence of the temperature inhomogeneity, w,r; — 0, this relation
reproduces the one for drift waves. If one takes wx — 0, equation (6.75) is
reproduced. '

The marginal stability condition is derived from equation (6.78). When the
'modg is marginally stable, w is real. The plasma dispersion function Z has a
imaginary part. Therefore, at the marginal stability condition, the coefficient of
tlhe Z function and other terms must vanish, e, T./T + w,/w — (T./T)H(y? -
s)owri/wo=0and 1 +T,/T; — (TE/T',-)_vlza)*T,/w = 0. The real frequency Iand
parallel wave number at the stability criterion are given as

T,
w=w,+ 37 O (6.80)
kﬁvlzhl _ T{,Z I 1
ol 2T +T,) \2 Z) (6.81)

where

Ni

(r—lﬂ nf'% -
Ca)\hg) (6.82)

The critical condition (6.81) is shown in figure 6.19.

2 T r T
kg
L Wx
1
Unstable Unstable
0 . .
-4 L

N

Figu.re 6.19. Stability/instability region for the ITG mode in the presence of the density
gr.adlenl (case of T, = T;). Above the boundaries, instability is possible due to dissipation
of electrons.
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When the density and temperature have the gradient in the same direction,
i.e., wwsri < 0, the density gradient tends to stabilize this mode. When the
ratio between the two gradients exceeds the criterion

Ni > Nic (6.83)

the mode becomes unstable. The critical value n; . satisfies n;, = 2 in the
case of equation (6.78) and is of the order of unity. It has been calculated
under various circumstances. (In the absence of density gradient, n — o0,
equation (6.81) gives the stability boundary |kyc,/w.r;| = 1/2. Comparing with
this result, the analysis of the simplified fluid approximation, equation (6.76),
shows a qualitative agreement.)

Even when the dispersion relation (6.78) predicts stability, there can remain
a residual instability if one takes additional effects such as the finite-ion-gyro-
radius effect or dissipation of electrons.

6.4.3 Toroidal ITG Mode

A coope‘rative effect of toroidicity and ITG causes a strong instability, which
is called the toroidal ITG mode (or toroidal n; mode) [6.11]. A simplified
dispersion relation is given as

k2(,2 -
¢y w Wi
[ .+. —

=0. (6.84)

* W — Wyt w

(See [6.12] for details of derivation.) In equation (6.84), @y, is the Doppler
shift due to the VB-drift of ions, wy; = k(V_D,, and the over-bar indicates
an average of VB-drift over the region where the perturbation extends in the
poloidal direction. In the absence of this Doppler shift. @y; — 0, equation (6.84)
reduces to equation (6.75). In order to see the combined etfect of the ion
temperature gradient and V B-drift, let us take the limit of ky — 0. In this limit,
where equation (6.75) provides a zero growth rate, equation (6.84) yields an
instability with the growth rate

Y ~ V0T OMi. (6.85)

The growth rate is positive if the direction of the VB drift of ions is the same
as the ion drift heat flux (figure 6.17). This unfavourable magnetic drift appears
when the magnetic curvature is bad. Stressing the importance of the bad toroidal
curvature, the instability in this limit is called the toroidal ITG mode (toroidal
n; mode). The case in section 6.4.2 is called the slab ITG mode (slab n; mode)
for distinction.

In sections 6.4.2 and 6.4.3, the instability of ITG mode is derived based
on an assumption of adiabatic response of electrons, i.e., nn,/n, = ed/T. This
implies that the flow of electrons is not caused by the development of ITG
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m()des. The ITG modes. in these simple limits, do not cause particle flux, but
induce selective loss of ion energy. Aiming at the explanation of anomalous ion
energy flux, a lot of work has been done on the ITG modes [4.15.6.11].

It should also be noted that the naming of the instability mode might not be
ll.w one and only possibility. In reality, several destabilizing mechanisms coexist
simultaneously: one can study, e.g., destabilization of the ITG mode by trapped
electrons. In such situations, the labelling of an instability by a particular name
may not be unique.

6.5 Magnetic Shear and Nonlocal Mode

An introduction of the magnetic shear increases the parallel mode number, and
is useful in eliminating the instability. In the case of a simplified geometry
such as equation (6.45), the parallel mode number varies in the x-direction as
equation (6.46),

ky=(k-B)B™" =kx/L,

where x = 0 corresponds to the mode rational surface, ky = 0. In a sheared
magnetic field, it is necessary to study the eigenmode structure.

An example is chosen from drift waves [6.13]. Equation (6.61) is written
as

-
w3

13 13 kﬁc% -
A ¢=0 (6.86)

yvhere ¢ is a static potential and ik, is replaced by V. It is noted that k. = 0
is chosen, i.e., the mode rational surface is placed at x = 0. The per[urbaliy()n is
Fourier decomposed in the y-direction. We write

blx,y,1) = b (x)explikyy — iwt). (6.87)

The eigenmode equation (6.86) is rewritten, with the help of equation (6.46)
kj = kyx /Ly, as a differential equation

2
s

& 2
Pl 1= 222 2 ~0
C e S kel S e =o. (6.88)

O.wing to the dependence of kj on x, the nabla-operator is no longer commutable
with ky. The sinusoidal function exp(ikyx) no longer satisfies the dispersion
relation.

. Equation (6.88) must be solved as an eigenvalue equation. In a
dimensionless form, x/p, — £, equation (6.88) is written in the form of a
Weber type equation

& o\
(ﬁ + H + O").‘“) d(x)=0 (6.89)
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ith the eigenvalue
h ) H=1-"2—kp. (6.90)

Wy

The magnitude of the magnetic shear is represented by the parameter

2.2 2
o2 = G 5 6.91)
w* L?

Equation (6.89) is solved with a proper boundary condition. The boundary
condition is chosen such that the amplitude vanishes at |fr| — 00 when the mode
is growing in time. (For the damped mode, the analytic continuation 1s used.)
The eigenfunction of equation (6.89) is given as

2
P (%) = exp (—%iz) (6.92)

with the eigenvalue o (6.93)

Solving equations (6.90) and (6.93), one has the expression for the frequency.

s Ps Ly
w=(1-kpHw. - 11%& = (1 - kfp_‘.z - l-Z—) Wy (6.94)

In deriving the imaginary part of equation (6.94), o is evaluated by use of the
relm]'cl)"rl:gudisp(::sion relation (6.94) now shows a weak but ﬁnite' damping r.ate
associated with the magnetic shear. This damping rate has a relation to the sign
of group velocity in the x-direction, equation (6.92). The eigenmode struc(u‘re,
illustrated in figure 6.20, shows that the wave energy is convec?ed to the reﬁlon
|¥] — oo. The rate of energy propagating out is in propomon t(’)vthe hs IZar
parameter /L. (In the far distance, where the condition |k|vis =~ w holds,

A

%)

=

Figure 6.20. Eigenmode structure of the drift wave in a sheared magnetic field.
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ie, x| >~ p,L,/L,, the ion Landau damping works and absorbs the wave energy
(2.4])

Comparing the eigenvalue equation (6.94) with that of a local estimate,
equation (6.61), one sees that the influence of magnetic shear on the growth rate
is very subtle, and careful analysis is required. The magnetic shear can also
influence the phase difference of electron response [6.14]. There is plenty of
literature on the linear drift instability in a sheared magnetic field [4.10,6.15].

The propagation of the wave energy across the magnetic surface, i.e., the
convective damping, is one of the principal effects of the magnetic shear. The
exchange of the wave energy between particles takes place in different locations.
The communication between different magnetic surfaces occurs. The nonlocal
transport of the wave energy is important in analysing the turbulence-driven
viscosity and related phenomena.
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