the monte carlo method

One-dhmensional integral
Consider the integral (normalized):

$$
I=\frac{\int_{a}^{b} f(x) e^{-s(x)} d x}{\int_{a}^{b} e^{-s(x)} d x}=\langle f(x)\rangle
$$

$Z=\int_{a}^{b} e^{-s(x)} d x$ normalization factor
$S(x)$ is some arbitrary real function
$p(x)=\frac{e^{-S(x)}}{z} \quad$ com be considered as normalized probability density

$$
I=\langle f\rangle=\int_{a}^{b} f(x) p(x) d x
$$

We will use probability there to evaluate integral

$$
\begin{aligned}
& \Delta x=\frac{b-a}{N} N \text { bins } \\
& P_{i}=p\left(\frac{x_{i-1}+x_{i}}{2}\right) \Delta x \\
& f_{i}=f\left(\frac{x_{i-1}+x_{i}}{2}\right) \\
& R=\sum_{i=1}^{N} f_{i} P_{i} R_{\text {iemann }} \text { sum } \\
& \lim _{N \rightarrow \infty} R(N)=\int_{a}^{b} f(x) p(x) d x=I
\end{aligned}
$$

- We will evahate R with a probabilistic process
- random walk (jump) from cell to cell
- Fixed size (Δx) regular cells are introduced for pedagogical purpose only. At he end of the process they com be eliminated

We start the walker in one of the N cells in (a, b) intural on x-axis

When wally is in cell i, we more it to a new cell j with following rakes (importance sampling I Mehuralis method):
(1) Select new cell j with equal pobkility $\frac{1}{N}$
(2) If $e^{-S\left(x_{j}\right)}>e^{-S\left(x_{i}\right)}$, move the waller to cell j
(3) If $e^{-S\left(x_{j}\right)}<e^{-S\left(x_{i}\right)}$, more the walker to cell j only with probability

$$
p=\frac{e^{-S\left(x_{j}\right)}}{e^{-S\left(x_{i}\right)}}
$$

otherwise select new cell aud start the purees again
(4) If walker morel to cell j, go to the tygiming of the purees ant select a new cell again If walker contimes to visit the cells and we make a histogram of how nary times a cell was visited after M steps, we should find

becomes exact in $M \rightarrow \infty$ limit

$$
\bar{f}=\sum_{i} f_{i} \frac{m_{i}}{M}=\frac{1}{M} \sum_{i} f_{i} m_{i}
$$

approximates R if M is large enough
for finite $M \bar{f}$ estimates $\langle f\rangle$ with a statistical error (not systematic!)

Exr is calculable from variance

$$
\begin{aligned}
& \quad \sigma^{2}=\left\langle(\bar{f}-f)^{2}\right\rangle \text { constant } \\
& \pm \frac{\sigma}{\sqrt{M}} \text { error } \\
& \lim _{M \rightarrow \infty} \bar{f}=R \\
& \frac{1}{M} \sum_{i} f_{i} m_{i} \rightarrow \sum_{i} f_{i} p_{i}=R
\end{aligned}
$$

Why does it work?
Consider K independent walkers executing L steps each. The histogram distritution in cells should be the same as the distribution of single walker after $M=K L$ steps

$$
L \cdot \frac{k_{i}}{K}=\frac{m_{i}}{M}
$$

snapshot L lime integrated histogram of
single walker
histogram at fixed time

If $K L=M$, we can think about single walker over long time, or an ensemble K cooling in time
$\checkmark L$ stops of ensemble is equivalent to $M=K L$ steps of single walker
\checkmark If we can prove that $\frac{K_{i}}{K}=p_{i}$ for loge K, then the single walker will realize the desired distribution
\checkmark Detailed balance guarankes the correct distribution of K ensemble after lane enough number of steps, single walker can be used then instead

Steps before equilibrium have to be discarded
$P_{i} \Pi(i \rightarrow j)=P_{j} \Pi(j \rightarrow i)$
1 DETAILED BALANCE
transition probability
Pi equilibrium pabblility of slate:
Detailed balance is satisfied by Metropolis algorithm:
(a) if $S\left(x_{j}\right)>S\left(x_{i}\right)$ for $i_{i j}$ pair of states

$$
\frac{\pi(i \rightarrow j)}{\pi(j \rightarrow i)}=\frac{e^{-s\left(x_{j}\right)} / e^{-s\left(x_{i}\right)}}{1}=\frac{p_{j}}{p_{i}}
$$

(6)

$$
\begin{aligned}
& \text { if } S\left(x_{j}\right)<S\left(x_{i}\right) \\
& \frac{\pi(i \rightarrow j)}{\pi(j, i)}=\frac{1}{e^{-S\left(x_{i}\right)} / e^{-S\left(x_{j}\right)}}=\frac{P_{j}}{P_{i}}
\end{aligned}
$$

If ensemble is in "equilibrium" with the right distribution across the cells, detailed balance will grantee that the distribution is statimany

If ensemble is not in the right equilibrium distribution, walkers will flee the oresprgulated cells in four of the unterproubted cells

Example $\frac{p_{i}}{p_{j}}=\frac{1}{2}$ for two cells equilibrium occupancy of cell j is twice of that for cell i
$\frac{\pi(i \rightarrow j)}{\pi(j \rightarrow i)}=\frac{p_{j}}{p_{i}}=2 \quad$ detailed balance for exangle $\left.\quad \begin{array}{rl}k_{j} & =200 \\ k_{i} & =100\end{array}\right\}$ would represat equilibrium

It is two times mare likely that punticle form cell i mores to cell j, in comparison with oparsite move of poulicle form cell j to cell i. This kegs the right distribution between two cells: same number of panicles is exchayd

$$
\left.\begin{array}{l}
k_{j}=400 \\
k_{i}=100
\end{array}\right\} \begin{aligned}
& \text { non-egulitriam situation } \\
& \text { Now trice as mover }
\end{aligned}
$$

Now trice as many particles more for j to i than $i \rightarrow j$. System mores boards equilibrium because cell j gets depleted relative L cell i

The discretitation of the x-axis can be eliminated wopletely; a, or b, or both aam be infinite

Two-dimensimal integral

$$
\langle f\rangle=\frac{\int_{a}^{b} d x_{2} \int_{a}^{l} d x_{1} f\left(x_{1}, x_{2}\right) e^{-S\left(x_{1}, x_{2}\right)}}{7}
$$

$$
Z=\int_{a}^{b} d x_{2} \int_{a}^{b} d x_{1} e^{-S\left(x_{1}, x_{2}\right)}
$$

Cells we now fro-dimensional

$$
R=\sum_{i} f_{i} p_{i} \quad p_{i}=p\left(\frac{x_{1}^{i-1}+x_{2}^{i}}{2}, \frac{x_{2}^{i-1}+x_{2}^{i}}{2}\right)
$$

i labels two-himensimal cells

$$
f_{i}=f\left(\frac{x_{1}^{i-1}+x_{1}^{i}}{2}, \frac{x_{2}^{i-1}+x_{2}^{i}}{2}\right)
$$

Same ensemble picture, of random walker In Mehogrlis move $i \rightarrow j$ fum m all to cell, first we select x_{1}^{j} corrobinate of cell, then we select new x_{2}^{j} covolinate in two-step proechue:

Gach stop is a Mehopolis ecapt-reject procedure
(1) Select nev x_{1}^{j} wilh $\frac{1}{N}$ pobbbility
(2) if $S\left(x_{1}^{j}, \psi_{2}^{i}\right)<S\left(x_{1}^{i}, x_{2}^{i}\right)$ occept
(3) if $S\left(x_{1}^{j}, x_{2}^{i}\right)>S\left(x_{1}^{i}, x_{2}^{i}\right)$

$$
\frac{e^{-S\left(x_{1}^{j}, x_{2}^{i}\right)}}{e^{-S\left(x_{1}^{i}, x_{2}^{i}\right)}}
$$

acceptance pubability
(4) Select now new x_{2}^{j} with $\frac{1}{N}$ pobbaitit
15) if $S\left(x_{1}{ }^{j}, x_{2}^{j}\right)<S\left(x_{1}{ }^{j}, x_{2}^{i}\right)$ accept
(6) if $S\left(x_{1}^{j}, x_{2}^{j}\right)>S\left(x_{1}^{j}, x_{2}^{i}\right)$

$$
\frac{e^{-S\left(x_{1}^{j}, x_{2}^{j}\right)}}{e^{-S\left(x_{1}^{j}, x_{2}^{i}\right)}}
$$

acceptance purbebility
$i \rightarrow j$ urve is conplete now
Easy to genenalize to D dimencions!

