PHYSICS 4C: QUIZ 5 SOLUTIONS

Problem 1

The total voltage drop for any loop is 0 , so

$$
\begin{equation*}
V=\frac{Q}{C}+V_{R} \tag{1}
\end{equation*}
$$

for either capacitor and either resistor. Specifically, the voltage drop over R_{1} at the instant when $Q_{1}=7 \mu \mathrm{C}$ is

$$
\begin{equation*}
V_{R_{1}}=V-\frac{Q_{1}}{C_{1}}=12 V-\frac{7 \mu \mathrm{C}}{1.8 \mu \mathrm{~F}}=8.11 \mathrm{~V} \tag{2}
\end{equation*}
$$

and the current through it is

$$
\begin{equation*}
I_{R_{1}}=\frac{V_{R_{1}}}{R_{1}}=\frac{8.11 \mathrm{~V}}{1.8 \mathrm{k} \Omega}=4.5 \mathrm{~mA} \tag{3}
\end{equation*}
$$

Alternative solution. The equivalent resistance is $R_{e q}=1.35 \mathrm{k} \Omega$ (in parallel, inverses of resistances add). The equivalent capacitance is $C_{e q}=7.2 \mu \mathrm{~F}$ (in parallel, capacitances add). The voltage droop over the two capacitors is the same,

$$
\begin{equation*}
V_{C}=\frac{Q_{1}}{C_{1}}=\frac{Q_{2}}{C_{2}}=\frac{Q_{e q}}{C_{e q}}, \tag{4}
\end{equation*}
$$

so we can solve for the charge on the equivalent capacitor:

$$
\begin{equation*}
Q_{e q}=\frac{Q_{1} C_{e q}}{C_{1}}=28 \mu \mathrm{C} \tag{5}
\end{equation*}
$$

Now we use the formula for charging the equivalent capacitor

$$
\begin{equation*}
Q_{e q}=C_{e q} V\left(1-e^{-t / R_{e q} C_{e q}}\right), \tag{6}
\end{equation*}
$$

frown which we can solve for time:

$$
\begin{equation*}
t=-R_{e q} C_{e q} \ln \left(1-\frac{Q_{e q} V}{C_{e q}}\right)=0.0038 \mathrm{~s} \tag{7}
\end{equation*}
$$

Dividing both sides of equation (6) by $C_{e q}$, we can solve for the voltage drop across the capacitors:

$$
\begin{equation*}
V_{C}=V\left(1-e^{-t / R_{e q} C_{e q}}\right), \tag{8}
\end{equation*}
$$

from which we find the voltage drop across the resistors

$$
\begin{gather*}
V_{R}=V-V_{C}=V e^{-t / R_{e q} C_{e q}}=8.11 \mathrm{~V} \tag{9}\\
1
\end{gather*}
$$

and current through the first resistor

$$
\begin{equation*}
I_{R_{1}}=\frac{V_{R}}{R_{1}}=\frac{8.11 \mathrm{~V}}{1.8 \mathrm{k} \Omega}=4.5 \mathrm{~mA} \tag{10}
\end{equation*}
$$

PROBLEM 2

Adding resistors in series for each branch and replacing them by equivalent resistances, we get I_{1} flowing through $R_{1}=19 \Omega, I_{2}$ flowing through $R_{2}=$ 12Ω, and I_{3} flowing through $R_{3}=35 \Omega$. The current going into and out of a node is the same:

$$
\begin{equation*}
I_{1}=I_{2}+I_{3} \tag{11}
\end{equation*}
$$

The voltage drop is 0 over any closed loop, so for the top loop,

$$
\begin{equation*}
6 \mathrm{~V}-(19 \Omega) I_{1}+12 \mathrm{~V}-(12 \Omega) I_{2}=0 \tag{12}
\end{equation*}
$$

and for the outer loop,

$$
\begin{equation*}
6 \mathrm{~V}-(19 \Omega) I_{1}+12 \mathrm{~V}-(35 \Omega) I_{3}=0 \tag{13}
\end{equation*}
$$

Solving these three equations for the three unknowns, we get

$$
\begin{equation*}
I_{1}=0.64 \mathrm{~A}, I_{2}=0.48 \mathrm{~A}, I_{3}=0.16 \mathrm{~A} \tag{14}
\end{equation*}
$$

Problem 3

$$
\begin{gather*}
F=m a=\frac{m v^{2}}{R}=3.1 \times 10^{-4} \mathrm{~N} \tag{15}\\
B=\frac{F}{q v}=0.023 \mathrm{~T} \tag{16}\\
f=\frac{1}{T}=\frac{v}{2 \pi R}=3 \times 10^{3} \mathrm{~Hz} \tag{17}
\end{gather*}
$$

Problem 4

$$
\begin{equation*}
F=I \vec{l} \times \vec{B} \tag{18}
\end{equation*}
$$

When the wire is along x-axis,

$$
\begin{equation*}
F_{1}=I l \hat{i} \times \vec{B}=5\left(B_{y} \hat{k}-B_{z} \hat{j}\right)=-2.5 \hat{j} \tag{19}
\end{equation*}
$$

When the wire is along y-axis,

$$
\begin{equation*}
F_{2}=I l \hat{j} \times \vec{B}=5\left(B_{z} \hat{i}-B_{x} \hat{k}\right)=2.5 \hat{i}-5 \hat{k} \tag{20}
\end{equation*}
$$

Setting vector components in the same direction equal to each other,

$$
\begin{equation*}
B_{x}=1 \mathrm{~T}, B_{y}=0, B_{z}=0.5 \mathrm{~T} \tag{21}
\end{equation*}
$$

