PHYSICS 4C: QUIZ 4 SOLUTIONS

Problem 1

First, find the number of electrons per unit volume, which, with one electron donated per atom, is the same as the number of atoms per unit volume:

$$
\begin{equation*}
n=\frac{\text { mass }}{\text { volume }} \times \frac{\# \text { atoms }}{\text { mass }}=\frac{\text { mass }}{\text { volume }} \times \frac{\# \text { atoms }}{\mathrm{mol}} \times \frac{\mathrm{mol}}{\mathrm{mass}} \tag{1}
\end{equation*}
$$

(2) $n=\left(10500 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(6 \times 10^{23} / \mathrm{mol}\right)\left(\frac{1}{0.108 \mathrm{~kg} / \mathrm{mol}}\right)=5.8 \times 10^{28} / \mathrm{m}^{3}$.
$j=n e v_{d}=\left(5.8 \times 10^{28} / \mathrm{m}^{3}\right)\left(1.6 \times 10^{-19} \mathrm{C}\right)\left(0.13 \times 10^{-3} \mathrm{~m} / \mathrm{s}\right)=1.2 \times 10^{6} \mathrm{~A} / \mathrm{m}^{2}$

$$
\begin{equation*}
I=j A=\left(1.2 \times 10^{6} \mathrm{~A} / \mathrm{m}^{2}\right)\left(\pi\left(1 \times 10^{-3} \mathrm{~m}\right)^{2}\right)=4 \mathrm{~A} . \tag{4}
\end{equation*}
$$

Problem 2
Initially, $T_{0}=30^{\circ} \mathrm{C}, V_{0}=17 \mathrm{~V}$. When temperature is changed, T is unknown, $V=12.2 \mathrm{~V}$.

$$
\begin{align*}
\rho & =\rho_{0}\left[1+\alpha\left(T-T_{0}\right)\right] \tag{5}\\
\frac{R A}{L} & =\frac{R_{0} A}{L}\left[1+\alpha\left(T-T_{0}\right)\right]
\end{align*}
$$

Since the dimensions of the wire don't change, they cancel. Using Ohm's law,

$$
\begin{equation*}
\frac{V}{I}=\frac{V_{0}}{I}\left[1+\alpha\left(T-T_{0}\right)\right] \tag{7}
\end{equation*}
$$

Canceling the current and solving for T,

$$
\begin{equation*}
T=\frac{V-V_{0}}{\alpha V_{0}}+T_{0}=\frac{12.2 \mathrm{~V}-17 \mathrm{~V}}{\left(0.0045 /{ }^{\circ} \mathrm{C}\right)(17 \mathrm{~V})}+30^{\circ} \mathrm{C}=-33^{\circ} \mathrm{C} . \tag{8}
\end{equation*}
$$

Problem 3

Using $I=\frac{P}{V}$, we can find the currents through both circuits:

$$
\begin{equation*}
I_{1}=0.67 \mathrm{~A} ; I_{2}=0.25 \mathrm{~A} \tag{9}
\end{equation*}
$$

Defining R_{0} as the resistance of the wire and using $P=I^{2} R_{0}$, we can write down the following relationship:

$$
\begin{align*}
& I_{1}^{2} R_{0}=I_{2}^{2} R_{0}+0.15 \mathrm{~W} \tag{10}\\
& R_{0}=\frac{0.15 \mathrm{~W}}{I_{1}^{2}-I_{2}^{2}}=0.4 \Omega \tag{11}
\end{align*}
$$

Problem 4

$$
\begin{gather*}
j=\frac{E}{\rho}=1.1 \times 10^{7} \mathrm{~A} / \mathrm{m}^{2} \tag{12}\\
I=j A=45 \mathrm{~A} \tag{13}\\
R=\frac{\rho L}{A}=0.01 \Omega \tag{14}\\
P=I^{2} R=20 \mathrm{~W} \tag{15}
\end{gather*}
$$

