PHYSICS 4C: QUIZ 3 SOLUTIONS

Problem 1

In equilibrium, the two spheres are at the same potential

$$
\begin{equation*}
V=\frac{k Q_{1}}{R_{1}}=\frac{k Q_{2}}{R_{2}}, \tag{1}
\end{equation*}
$$

The total charge on the surfaces of the two spheres is Q, so:

$$
\begin{equation*}
Q_{2}=Q-Q_{1} . \tag{2}
\end{equation*}
$$

Plugging this into equation (1) and rearranging,

$$
\begin{equation*}
Q_{1}=\frac{Q R_{1}}{R_{1}+R_{2}} . \tag{3}
\end{equation*}
$$

Problem 2

No work done means the potential at points A and B is the same. The potentials are

$$
\begin{gather*}
V_{A}=k\left(\frac{30 \mu \mathrm{C}}{30 \mathrm{~cm}}-\frac{10 \mu \mathrm{C}}{20 \mathrm{~cm}}\right)=0.5 k \frac{\mu \mathrm{C}}{\mathrm{~cm}} \tag{4}\\
V_{B}=k\left(\frac{30 \mu \mathrm{C}}{L \mathrm{~cm}}-\frac{10 \mu \mathrm{C}}{(L+50) \mathrm{cm}}\right)
\end{gather*}
$$

Setting them equal to each other and canceling k and units,

$$
\begin{equation*}
\frac{30}{L}-\frac{10}{L+50}=0.5 \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
L^{2}+10 L-3000=0 \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
L=-5 \pm 55 \tag{8}
\end{equation*}
$$

The negative sign gives a solution to the right of q_{2}, so we choose the positive, $L=50 \mathrm{~cm}$.

Problem 3

The equivalent capacitance of C_{2} and C_{3} (series) is

$$
\begin{equation*}
C_{a}=\left(\frac{1}{2 C}+\frac{1}{C}\right)^{-1}=\frac{2 C}{3} \tag{9}
\end{equation*}
$$

The equivalent capacitance of C_{a} and C_{4} (parallel) is

$$
\begin{equation*}
C_{b}=\frac{2 C}{3}+2 C=\frac{8 C}{3} \tag{10}
\end{equation*}
$$

The equivalent capacitance of the circuit is the equivalent capacitance of C_{b} and C_{1} (series),

$$
\begin{equation*}
C_{\text {circuit }}=\left(\frac{3}{8 C}+\frac{1}{C}\right)^{-1}=\frac{8 C}{11} \tag{11}
\end{equation*}
$$

For the second part, we can write down the following equations for voltages, using the same equivalent capacitors as before:

$$
\begin{gather*}
V_{1}+V_{b}=V, \text { and } \tag{12}\\
Q_{1}=Q_{b} \\
C_{1} V_{1}=C_{b} V_{b} \\
C V_{1}=\frac{8 C V_{b}}{3} \tag{13}
\end{gather*}
$$

Eliminating V_{1} between equations (12) and (13) and solving for V_{b},

$$
\begin{equation*}
V_{b}=\frac{3 V}{11} \tag{14}
\end{equation*}
$$

Next, we find V_{2} from V_{b} :

$$
\begin{align*}
V_{2}+V_{3} & =V_{b}=\frac{3 V}{11} \tag{15}\\
Q_{2} & =Q_{3} \\
C_{2} V_{2} & =C_{3} V_{3} \\
2 C V_{2} & =C V_{3} \tag{16}
\end{align*}
$$

Eliminating V_{3} between equations (15) and (16) and solving for V_{2},

$$
\begin{align*}
V_{2}=\frac{V_{b}}{3} & =\frac{V}{11} \tag{17}\\
Q_{2}=C_{2} V_{2} & =\frac{2 C V}{11} \tag{18}
\end{align*}
$$

PROBLEM 4

The two halves of the capacitor act as two capacitors in parallel, each of area $A / 2$. Their capacitances add:

$$
\begin{equation*}
C=C_{1}+C_{2}=\left(K_{1}+K_{2}\right) \frac{\epsilon_{0} A}{2 d} \tag{19}
\end{equation*}
$$

