PHYSICS 4C: QUIZ 3 SOLUTIONS

Problem 1

In equilibrium, the two spheres are at the same potential

(1)
$$V = \frac{kQ_1}{R_1} = \frac{kQ_2}{R_2},$$

The total charge on the surfaces of the two spheres is Q, so:

$$(2) Q_2 = Q - Q_1.$$

Plugging this into equation (1) and rearranging,

(3)
$$Q_1 = \frac{QR_1}{R_1 + R_2}.$$

Problem 2

No work done means the potential at points A and B is the same. The potentials are

(4)
$$V_A = k \left(\frac{30\mu C}{30\text{cm}} - \frac{10\mu C}{20\text{cm}}\right) = 0.5k \frac{\mu C}{\text{cm}}$$

(5)
$$V_B = k \left(\frac{30\mu C}{L \text{ cm}} - \frac{10\mu C}{(L+50)\text{ cm}}\right)$$

Setting them equal to each other and canceling k and units,

(6)
$$\frac{30}{L} - \frac{10}{L+50} = 0.5$$

(7)
$$L^2 + 10L - 3000 = 0$$

(8)
$$L = -5 \pm 55$$

The negative sign gives a solution to the right of q_2 , so we choose the positive, L = 50 cm.

Problem 3

The equivalent capacitance of C_2 and C_3 (series) is

(9)
$$C_a = \left(\frac{1}{2C} + \frac{1}{C}\right)^{-1} = \frac{2C}{3}.$$

The equivalent capacitance of C_a and C_4 (parallel) is

(10)
$$C_b = \frac{2C}{3} + 2C = \frac{8C}{3}.$$

The equivalent capacitance of the circuit is the equivalent capacitance of C_b and C_1 (series),

(11)
$$C_{circuit} = \left(\frac{3}{8C} + \frac{1}{C}\right)^{-1} = \frac{8C}{11}.$$

For the second part, we can write down the following equations for voltages, using the same equivalent capacitors as before:

(12)
$$V_1 + V_b = V, \text{and}$$

(13)

$$Q_1 = Q_b$$

$$C_1 V_1 = C_b V_b$$

$$CV_1 = \frac{8CV_b}{3}$$

Eliminating V_1 between equations (12) and (13) and solving for V_b ,

(14)
$$V_b = \frac{3V}{11}$$

Next, we find V_2 from V_b :

(15)
$$V_{2} + V_{3} = V_{b} = \frac{3V}{11}$$
$$Q_{2} = Q_{3}$$
$$C_{2}V_{2} = C_{3}V_{3}$$
(10)

$$(16) 2CV_2 = CV_3.$$

Eliminating V_3 between equations (15) and (16) and solving for V_2 ,

(17)
$$V_2 = \frac{V_b}{3} = \frac{V}{11}$$

(18)
$$Q_2 = C_2 V_2 = \frac{2CV}{11}.$$

Problem 4

The two halves of the capacitor act as two capacitors in parallel, each of area A/2. Their capacitances add:

(19)
$$C = C_1 + C_2 = (K_1 + K_2) \frac{\epsilon_0 A}{2d}.$$