PHYSICS 4C: QUIZ 1 SOLUTIONS

Problem 1

Since the distance $r=\frac{0.5 * \sqrt{2}}{2}$ meters from the center charge to each of the corner charges is the same,

$$
\begin{aligned}
\mathbf{F}= & \frac{k Q \Sigma q_{i} \hat{r}_{i}}{r^{2}} \\
= & \frac{k Q}{r^{2}}\left(q_{1} \frac{\hat{x}-\hat{y}}{\sqrt{2}}+q_{2} \frac{-\hat{x}-\hat{y}}{\sqrt{2}}+q_{3} \frac{-\hat{x}+\hat{y}}{\sqrt{2}}+q_{4} \frac{\hat{x}+\hat{y}}{\sqrt{2}}\right) \\
= & \frac{\left(8.99 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}\right)\left(3.2 \times 10^{-6} \mathrm{C}\right)}{\left(\frac{0.5 \mathrm{~m} \times \sqrt{2}}{2}\right)^{2}} \\
& \times\left(2.3 \times 10^{-6} \mathrm{C} \frac{\hat{x}-\hat{y}}{\sqrt{2}}-7.1 \times 10^{-6} \mathrm{C} \frac{-\hat{x}-\hat{y}}{\sqrt{2}}\right. \\
& \left.-0.7 \times 10^{-6} \mathrm{C} \frac{-\hat{x}+\hat{y}}{\sqrt{2}}-5.6 \times 10^{-6} \mathrm{C} \frac{\hat{x}+\hat{y}}{\sqrt{2}}\right) \\
= & 2.30 \times 10^{5} \mathrm{~N} \mathrm{C}^{-1} \frac{1 \times 10^{-6} \mathrm{C}}{\sqrt{2}}(4.5 \hat{x}-1.5 \hat{y}) \\
= & 0.244(3 \hat{x}-\hat{y}) \mathrm{N},
\end{aligned}
$$

the magnitude of which is

$$
F=0.244 \sqrt{3^{2}+(-1)^{2}}=0.77 \mathrm{~N},
$$

and the direction is $3 \hat{x}-\hat{y}$, which corresponds to 18.4° below the positive x-axis.

Problem 2

The ring can be represented as a superposition of two rings, one (a) with uniform charge density λ and another (b) with charge density 2λ on the top half and -2λ on the bottom half. Consider the electric field on the x-axis. By symmetry, ring (a) will not cause an electric field in the \hat{y} or \hat{z} directions. We are left with

$$
E_{x, a}=\frac{k Q x}{\left(x^{2}+a^{2}\right)^{3 / 2}}=\frac{2 \pi a \lambda k x}{\left(x^{2}+a^{2}\right)^{3 / 2}} .
$$

The second ring (b) will produce no E_{x} or E_{z} along x-axis by symmetry. E_{y} will be downward, pointing from the positive charge on the top to the negative charge on the bottom of the ring. Adding the two fields, we get

$$
E_{x}=\frac{2 \pi a \lambda k x}{\left(x^{2}+a^{2}\right)^{3 / 2}}
$$

along x-axis; E_{y} is negative and E_{z} is 0 everywhere on the x-axis.
Alternative solution. Since a ring of uniform charge is symmetric around x-axis, every bit of the ring contributes the same amount to E_{x} along the x-axis. This means E_{x} of a half-ring is the same as E_{x} of a ring as long as they have the same total charge. Thus, we can calculate the two fields for the two half-rings of charges $Q_{1}=3 \pi a \lambda$ and $Q_{2}=-\pi a \lambda$, and add them. This is not true for E_{y} or E_{z} along the x-axis (both are 0 for a uniformly charged ring, but not necessarily in this case) or any electric field off x-axis. In short, be careful when using a formula derived for a symmetric object by dividing the object into asymmetric components.

$$
\begin{aligned}
E_{x} & =\frac{k Q_{1} x}{\left(x^{2}+a^{2}\right)^{3 / 2}}+\frac{k Q_{2} x}{\left(x^{2}+a^{2}\right)^{3 / 2}} \\
& =\frac{3 \pi a \lambda k x}{\left(x^{2}+a^{2}\right)^{3 / 2}}+\frac{-\pi a \lambda k x}{\left(x^{2}+a^{2}\right)^{3 / 2}} \\
& =\frac{2 \pi a \lambda k x}{\left(x^{2}+a^{2}\right)^{3 / 2}}
\end{aligned}
$$

Field lines start at the positively charged half of the ring and end on the negatively charged half, so E_{y} is down, and $E_{z}=0$ by symmetry.

Problem 3
Since electrostatic force on the particle is only in the y-direction, the particle's velocity in the x-direction is constant, $v_{x}(t)=v_{0}$. This means the particle takes the time

$$
t=x / v_{0}=(0.04 \mathrm{~m}) /(1500 \mathrm{~m} / \mathrm{s})=2.67 \times 10^{-5} \mathrm{~s}
$$

to clear the capacitor. Since the particle enters halfway between the plates, its maximum vertical displacement is $\Delta y=2 \mathrm{~mm}$ during that time. The y-force on the particle is

$$
F_{y}=q E=m a_{y}
$$

so its y-acceleration is

$$
a_{y}=\frac{q E}{m}
$$

From classical mechanics,

$$
\Delta y=\frac{a_{y} t^{2}}{2}=\frac{q E t^{2}}{2 m}
$$

From this, maximum value of the electric field is

$$
E=\frac{2 m \Delta y}{q t^{2}}=\frac{2\left(6.6 \times 10^{-27} \mathrm{~kg}\right)(0.002 \mathrm{~m})}{\left(3.2 \times 10^{-19} \mathrm{C}\right)\left(2.67 \times 10^{-5} \mathrm{~s}\right)^{2}}=0.12 \mathrm{~N} / \mathrm{C}
$$

