PHYSICS 4C: QUIZ 1 SOLUTIONS

Problem 1

Since the distance $r = \frac{0.5*\sqrt{2}}{2}$ meters from the center charge to each of the corner charges is the same,

$$\begin{split} \mathbf{F} &= \frac{kQ\Sigma q_i \hat{r}_i}{r^2} \\ &= \frac{kQ}{r^2} (q_1 \frac{\hat{x} - \hat{y}}{\sqrt{2}} + q_2 \frac{-\hat{x} - \hat{y}}{\sqrt{2}} + q_3 \frac{-\hat{x} + \hat{y}}{\sqrt{2}} + q_4 \frac{\hat{x} + \hat{y}}{\sqrt{2}}) \\ &= \frac{(8.99 \times 10^9 \text{N m}^2 \text{C}^{-2})(3.2 \times 10^{-6} \text{C})}{(\frac{0.5 \text{m} \times \sqrt{2}}{2})^2} \\ &\times (2.3 \times 10^{-6} \text{C} \frac{\hat{x} - \hat{y}}{\sqrt{2}} - 7.1 \times 10^{-6} \text{C} \frac{-\hat{x} - \hat{y}}{\sqrt{2}} \\ &- 0.7 \times 10^{-6} \text{C} \frac{-\hat{x} + \hat{y}}{\sqrt{2}} - 5.6 \times 10^{-6} \text{C} \frac{\hat{x} + \hat{y}}{\sqrt{2}}) \\ &= 2.30 \times 10^5 \text{N C}^{-1} \frac{1 \times 10^{-6} \text{C}}{\sqrt{2}} (4.5 \hat{x} - 1.5 \hat{y}) \\ &= 0.244 (3 \hat{x} - \hat{y}) \text{N}, \end{split}$$

the magnitude of which is

$$F = 0.244\sqrt{3^2 + (-1)^2} = 0.77 \mathrm{N},$$

and the direction is $3\hat{x} - \hat{y}$, which corresponds to 18.4° below the positive x-axis.

Problem 2

The ring can be represented as a superposition of two rings, one (a) with uniform charge density λ and another (b) with charge density 2λ on the top half and -2λ on the bottom half. Consider the electric field on the *x*-axis. By symmetry, ring (a) will not cause an electric field in the \hat{y} or \hat{z} directions. We are left with

$$E_{x,a} = \frac{kQx}{(x^2 + a^2)^{3/2}} = \frac{2\pi a\lambda kx}{(x^2 + a^2)^{3/2}}.$$

The second ring (b) will produce no E_x or E_z along x-axis by symmetry. E_y will be downward, pointing from the positive charge on the top to the negative charge on the bottom of the ring. Adding the two fields, we get

$$E_x = \frac{2\pi a\lambda kx}{(x^2 + a^2)^{3/2}}$$

along x-axis; E_y is negative and E_z is 0 everywhere on the x-axis.

Alternative solution. Since a ring of uniform charge is symmetric around x-axis, every bit of the ring contributes the same amount to E_x along the x-axis. This means E_x of a half-ring is the same as E_x of a ring as long as they have the same total charge. Thus, we can calculate the two fields for the two half-rings of charges $Q_1 = 3\pi a\lambda$ and $Q_2 = -\pi a\lambda$, and add them. This is not true for E_y or E_z along the x-axis (both are 0 for a uniformly charged ring, but not necessarily in this case) or any electric field off x-axis. In short, be careful when using a formula derived for a symmetric object by dividing the object into asymmetric components.

$$E_x = \frac{kQ_1x}{(x^2 + a^2)^{3/2}} + \frac{kQ_2x}{(x^2 + a^2)^{3/2}}$$
$$= \frac{3\pi a\lambda kx}{(x^2 + a^2)^{3/2}} + \frac{-\pi a\lambda kx}{(x^2 + a^2)^{3/2}}$$
$$= \frac{2\pi a\lambda kx}{(x^2 + a^2)^{3/2}}.$$

Field lines start at the positively charged half of the ring and end on the negatively charged half, so E_y is down, and $E_z = 0$ by symmetry.

Problem 3

Since electrostatic force on the particle is only in the y-direction, the particle's velocity in the x-direction is constant, $v_x(t) = v_0$. This means the particle takes the time

$$t = x/v_0 = (0.04 \text{m})/(1500 \text{m/s}) = 2.67 \times 10^{-5} \text{s}$$

to clear the capacitor. Since the particle enters halfway between the plates, its maximum vertical displacement is $\Delta y = 2$ mm during that time. The *y*-force on the particle is

$$F_y = qE = ma_y,$$

so its y-acceleration is

$$a_y = \frac{qE}{m}.$$

From classical mechanics,

$$\Delta y = \frac{a_y t^2}{2} = \frac{qEt^2}{2m}$$

From this, maximum value of the electric field is

$$E = \frac{2m\Delta y}{qt^2} = \frac{2(6.6 \times 10^{-27} \text{kg})(0.002 \text{m})}{(3.2 \times 10^{-19} \text{C})(2.67 \times 10^{-5} \text{s})^2} = 0.12 \text{N/C}.$$