
Ch. 22: 4, 9, 10, 19, 20, 21, 24, 29, 31, 34, 38 

 
4. (a) From the diagram in the textbook, we see that the flux outward through the hemispherical  

surface is the same as the flux inward through the circular surface base of the 

hemisphere.  On that surface all of the flux is perpendicular to the surface.  Or, we say 

that on the circular base, .E A
rr

�   Thus 
2

E
.r EπΦ = =E A

rr
�  

(b)  E
r
 is perpendicular to the axis, then every field line would both enter through the 

hemispherical  

surface and leave through the hemispherical surface, and so 
E

0 .Φ =  

 

9. The only contributions to the flux are from the faces perpendicular to the electric field.  Over 

each of these two surfaces, the magnitude of the field is constant, so the flux is just E A
rr
�  on 

each of these two surfaces.   
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10. Because of the symmetry of the problem one sixth of the total flux will pass through each 

face. 
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19. For points inside the nonconducting 

spheres, the electric field will be 

determined by the charge inside the 

spherical surface of radius r. 
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The electric field for 0r r≤  can be 

calculated from Gauss’s law. 
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The electric field outside the sphere is calculated from Gauss’s law with 
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 The spreadsheet used for this problem can be found on the Media Manager, with filename 

“PSE4_ISM_CH22.XLS,” on tab “Problem 22.19.” 
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20. (a) When close to the sheet, we approximate it as an infinite sheet, and use the result of 

Example  

22-7.  We assume the charge is over both surfaces of the aluminum. 
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 (b) When far from the sheet, we approximate it as a point charge. 
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21. (a) Consider a spherical gaussian surface at a radius of 3.00 cm.  It encloses all of the charge. 
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(b) A radius of 6.00 cm is inside the conducting material, and so the field must be 0.  Note 

that  

there must be an induced charge of 
6

5.50 10 C
−− ×  on the surface at  r = 4.50 cm, and 

then an induced charge of 
6

5.50 10 C
−×  on the outer surface of the sphere. 

(c) Consider a spherical gaussian surface at a radius of 3.00 cm.  It encloses all of the charge. 

 
24. Since the charges are of opposite sign, and since the charges are free to move since they are 

on conductors, the charges will attract each other and move to the inside or facing edges of 

the plates.  There will be no charge on the outside edges of the plates.  And there cannot be 

charge in the plates themselves, since they are conductors.  All of the charge must reside on 

surfaces.  Due to the symmetry of the problem, all field lines must be perpendicular to the 

plates, as discussed in Example 22-7. 

(a) To find the field between the plates, we choose a gaussian cylinder, 

perpendicular to the plates, with area A for the ends of the cylinder.  We 

place one end inside the left plate (where the field must be zero), and the 

other end between the plates.  No flux passes through the curved surface 

of the cylinder. 
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The field lines between the plates leave the inside surface of the left plate, and terminate 

on the inside surface of the right plate.  A similar derivation could have been done with 

the right end of the cylinder inside of the right plate, and the left end of the cylinder in 

the space between the plates. 

 (b) If we now put the cylinder from above so that the right end is  
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inside the conducting material, and the left end is to the left of the left plate, the only 

possible location for flux is through the left end of the cylinder.  Note that there is NO 

charge enclosed by the Gaussian cylinder. 
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 (c) If the two plates were nonconductors, the results would not change.  The charge would be  

distributed over the two plates in a different fashion, and the field inside of the plates 

would not be zero, but the charge in the empty regions of space would be the same as 

when the plates are conductors. 

 
29. Due to the spherical symmetry of the problem, Gauss’s law using a sphere of radius r leads 

to the following. 
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 (a) For the region 
1

0 ,r r< < the enclosed charge is 0. 
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(b) For the region 
01 ,r r r< < the enclosed charge is the product of the volume charge 

density times the volume of charged material enclosed.  The charge density is given by 
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 (c) For the region 0 ,r r>  the enclosed charge is the total charge, Q. 
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31. (a) Create a gaussian surface that just encloses the inner surface of the spherical shell.  Since 

the  

electric field inside a conductor must be zero, Gauss’s law requires that the enclosed 

charge be zero.  The enclosed charge is the sum of the charge at the center and charge 

on the inner surface of the conductor. 
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(b) The total charge on the conductor is the sum of the charges on the inner and outer 

surfaces. 
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(c) A gaussian surface of radius 
1

r r<  only encloses the center charge, q.  The electric field 

will  

therefore be the field of the single charge. 
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(d) A gaussian surface of radius 
1 0
r r r< <  is inside the conductor so 0 .E =  

(e) A gaussian surface of radius 0r r>  encloses the total charge q Q+ .  The electric field 

will then  

be the field from the sum of the two charges. 
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34. The geometry of this problem is similar to Problem 33, and so 

we use the same development, following Example 22-6.  See 

the solution of Problem 33 for details. 
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 (a) For 
0
,R R>  the enclosed volume of the shell is  
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 (b) For 
0
,R R<  the enclosed volume of the shell is 
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38. The geometry of this problem is similar to Problem 33, and 

so we use the same development, following Example 22-6.  

See the solution of Problem 33 for details. 
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 (a) For 
1

0 ,R R< < the enclosed charge is the volume of  

charge enclosed, times the charge density. 
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 (b) For 
1 2

,R R R< <  the enclosed charge is all of the charge on the inner cylinder. 
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 (c) For 
2 3

,R R R< <  the enclosed charge is all of the charge on the inner cylinder, and the 

part of  

the charge on the shell that is enclosed by the gaussian cylinder. 
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 (d) For 
3
,R R>  the enclosed charge is all of the charge on both the inner cylinder and the 

shell. 
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 (e) See the graph.  The spreadsheet 

used for  

this problem can be found on the Media 

Manager, with filename 

“PSE4_ISM_CH22.XLS,” on tab 

“Problem 22.38e.” 
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