
Introductory Notes on Probability Theory

Grigor Aslanyan

October 28, 2009

1 Definition of probabilities

Let us imagine a class of 100 physics students that have to take a physics test. Each student
wants to know her overall standing among everybody else, so she wants to know “the overall
picture” of the whole class, in other words how the class did on average. So instead of looking
at 100 numbers she just checks the average score of the class and gets a very good picture of
the whole class without any hard work. Now suppose she is more curious and she wants to
know if her classmate sitting next to her got a higher score than herself or not. Here she has
a problem because the scores are not posted with names, so she has no way to know the exact
score of her classmate. But she can still make some wise guesses. Suppose only 7 people out
of 99 remaining students (she has to exclude herself since she knows her score exactly) got
higher scores. Then she may guess that the chances that her classmate got a higher score
than herself are slim. How does she arrive at that conclusion? What really matters in this
case is the ratio of the number of people with higher scores to the total number of people,
and we will define that ratio to be the probability of the fact that her classmate got a higher
score than herself:

P (her classmate has a higher score) =
Number of students with higher score

Total number of students
(1)

By definition we see that this number is always between 0 and 1. If she was good enough
to be the best in class, i.e. nobody got a higher score, then the probability becomes 0, but
in this case she knows with certainty that her classmate didn’t get a higher score. So we can
conclude that the facts with probability 0 are definitely false. On the other hand, if
she was the worst, then 99 out of 99 others got a higher score and the probability becomes
1, however now she will certainly know that her classmate got a higher score. So the facts
with probability 1 are definitely true. Note that the whole analysis that we did for the
classmate sitting next to her will be true for any other of her classmates, so we can say that
the probability defined above is really the probability of a randomly chosen student to have
a higher score:

P (a random student has a higher score) =
Number of students with higher score

Total number of students
(2)
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Now imagine that she is very social and after two weeks she makes friends with 40 students
in her class and feels free to ask them their test scores. Some of them will have higher scores,
some of them lower, but we can understand that the higher the probability is for one single
student to have a higher score, the more people among her 40 friends will turn out to have
higher scores. A good guess of the number of people with higher scores among these 40 will
be just 40 × P (a random student has a higher score). Of course, the more people she asks
the more accurate that guess becomes, and if she asks everybody then this guess will become
exact just by our definition of probability.

Let us try to generalize the idea of probability. In the example above we can think about
experiments and outcomes. The experiment was to ask a random student her score, and the
outcome was the answer of the question “Is that score higher than a given value?” - true
or false. We were able to calculate the probability of the positive outcome simply because
we knew all the outcomes (we knew all the scores), but in general we may not know that.
However, we may still be able to figure out the probability by some other ways. Consider
tossing a coin. We are interested in the probability of getting a head. In this case it makes
no sense to consider all of the outcomes of all coin tosses that have happened or will ever
happen in the universe, but still, if we imagine a very large number of coin tosses, then we
expect to get a tail in approximately half of them. The ratio of the number of heads to the
total number of tosses will be the closer to 0.5 the more experiments we make. So although
there is no finite number of experiments, we can still find the probability just by considering
a “very large number” of experiments. There are even cases where we are able to make
but a single experiment with a given system, but we can still talk about probabilities. For
example, we may ask the question “What is the probability that it will rain tomorrow in La
Jolla?”. Depending on the weather conditions that we have today it is possible to find an
answer to that question, but of course we will not be able to do the experiment (i.e. check
if it rains the next day) more than once since we cannot reproduce the conditions that we
have today once again or a very large number of times. But we can still imagine a large
number or experiments and ask ourselves what the ratio of the systems where it actually
rains the next day would be to the total number, i.e. the probability of raining tomorrow
(after all, we did not have to really toss coins to figure out the probability of getting a head,
imagination and intuition were enough). So we can in general define the probability that a
given event A happens by the results of a large number of (real or imaginary) experiments:

P (A) =
Number of experiments where A happens

Total number of experiments
(3)

where formally we have to take the limit of the total number going to infinity.

2 Adding probabilities and normalization

Let us consider our example of physics students once again. Now imagine that a given
student wants to know the probability that her classmate got the same score as herself. Let
us call that event A. By our definition of probabilities above, we have

P (A) =
Number of students with equal score

Total number of students
(4)
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If we define event B to be the case when her classmate has a higher score, then we have

P (B) =
Number of students with higher score

Total number of students
(5)

Now let event event C be the one when her classmate has an equal or higher score, which
simply means event A or event B happens. We get

P (C) =
Number of students with equal or higher score

Total number of students
(6)

But clearly

Number of students with equal or higher score = Number of students with equal score

+Number of students with higher score (7)

Plugging in (6) we get

P (C) =
Number of students with higher score

Total number of students
+

Number of students with equal score

Total number of students

= P (A) + P (B)

The important point above was that events A and B were mutually exclusive, i.e. there
is no case when they happen simultaneously, that was why (7) was true. Generalizing, we
can say that whenever events A and B are mutually exclusive we have the rule

P (A or B) = P (A) + P (B) (8)

Let us now consider the event B′ which is the case when the classmate has a lower score.
We then have

P (B′) =
Number of students with lower score

Total number of students
(9)

Clearly B′ is mutually exclusive with both A and B, so we can apply our addition rule
(8) to all three events A, B, and B′ to get

P (A or B or B′) = P (A) + P (B) + P (B′) (10)

However, these three events, being mutually exclusive, exhaust all of the possibilities, in
other words the event A or B or B′ is true with certainty, i.e. it has probability 1. Therefore

P (A) + P (B) + P (B′) = 1 (11)

The equation (11) is called the normalization condition. Of course, in this example the
normalization condition can be checked directly by using equations (4), (5), and (9) and the
fact that the total number of students is equal to the sum of the number of students with
higher score, equal score, and lower score.
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We can formulate the normalization condition for the general case as follows. Suppose
that all of the possible outcomes of a given experiment are events A1, A2, ... , An, such that
they are mutually exclusive. Then the sum of their probabilities must be equal to 1:

n∑
i=1

P (Ai) = 1 (12)

In general, we may not be able to calculate all of the different probabilities and check
the normalization condition explicitly, but we have to use the normalization condition in
addition to what we know to figure out the probabilities. Let us consider the example of
tossing a coin, and calculate the probabilities of possible outcomes in a different way. We
know that there are two possible outcomes - head and tail. We will use only the fact, that
neither of these events is more preferable, i.e. they must have the same probability:

P (head) = P (tail) (13)

But we also know that the normalization condition must be true, which in this case
becomes

P (head) + P (tail) = 1 (14)

Plugging (13) in (14) we get

2P (tail) = 1

P (tail) =
1

2

And then (13) gives

P (head) =
1

2

in agreement with our previous result!

3 Average and standard deviation

Before we formulate the rules for calculating averages in general, let us consider the example
of the physics class once again. Suppose now that the score is an integer between 0 and
30 for each of the students, and we want to know the average score. Let us enumerate the
students from 1 to 100 and let the score of student i be Si. Then, by definition, the average
score is (in general, we denote the average of a quantity Q by < Q >)

< S >=

∑100
i=1 Si
100

(15)

The order in which we add all the different scores does not matter, so we may choose to
first add all the scores of 0, then 1, and so on, up to scores of 30. Let us assume that the
number of students with score x is nx (of course, it could be 0 for some of the scores). Then,
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if we just sum add the scores of students with a given score x, we just get nxx. To get the
total sum, we have to add nxx for all possible scores. We can rewrite the average score as

< S >=

∑30
x=0 nxx

100
=

30∑
x=0

nxx

100
=

30∑
x=0

nx
100

x

But let us recall that, by definition, the ratio of the number of students with a given
score x to the total number of students is the probability of a random student to have score
x:

P (x) =
nx
100

So we can rewrite the average score in the following way

< S >=
30∑
x=0

P (x)x (16)

This way of calculating the average can be easily generalized, since it depends neither on
the numbers of different events nor on the total number of events, it only depends on the
probabilities of all different possibilities. So we can consider an experiment where we are
measuring some quantity x, and all the possible outcomes are x1, x2, ... , xn. If we denote
the probability of the outcome xi to be P (xi) then we can write the average of x as

< x >=
n∑
i=1

P (xi)xi (17)

We may also be interested in calculating the average of some given function of x, call it
f(x). The different possible values of f(x) are f(x1), f(x2), ... , f(xn), and the probability
P (f(xi)) of the value f(xi) is, of course, the same as for x to have the value xi, i.e. P (xi)

P (f(xi)) = P (xi)

We can now use the rule (17) to find the average of f(x)

< f >=
n∑
i=1

P (f(xi))f(xi)

< f >=
n∑
i=1

P (xi)f(xi) (18)

Using (18), it is easy to see that the average of a sum of two functions is the sum of the
averages. Indeed:

< f + g >=
n∑
i=1

P (xi)(f(xi) + g(xi)) =
n∑
i=1

P (xi)f(xi) +
n∑
i=1

P (xi)g(xi) =< f > + < g >

(19)
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Similarly, the average of a constant times a function is equal to the constant times the
average of the function:

< cf >=
n∑
i=1

P (xi)cf(xi) = c

n∑
i=1

P (xi)f(xi) = c < f > (20)

where c is any number. Finally, if the function f is a constant itself, i.e. it is the same for
all the values of x, then the average is clearly equal to that constant.

Once we know the average, the next question of interest is how close a random measure-
ment is to the average value. For example, if all of the students in our example of physics
class get the same score of 20, then the average is clearly 20, but if half of the students gets
30 and the other half gets 10, then the average is still going to be 20. Here the difference is
that in the first case we know with certainty that any randomly chosen student will have a
score of 20, while in the second case a randomly chosen student will have a score that differs
from the average by 10. So by just stating that the average is 20 we do not get any idea
about how close a random measurement will be to that average value. That is why we want
to know “on average, how much a random measurement will differ from the average value”.
We want another quantity that will describe this. The simplest thing to do would be to take
the average of the difference from the average value, i.e. for a general function f to consider

σf =< f− < f >>

However, using the rules that we derived to calculate averages, we get

σf =< f > − << f >>=< f > − < f >= 0

where we used the fact that << f >>=< f > since < f > is just a constant number. It is
not hard to understand the reason of this failure. When we take f− < f > it can be both
positive and negative, and all the positive values cancel the negative ones when averaged out.
What we are really interested in is the absolute value of that difference, so we can simply
take the square of that quantity to make sure it is always positive and then take the average,
and afterwards take the square root. We will call that quantity the standard deviation of f ,
or the uncertainty of f:

σf =
√
< (f− < f >)2 > (21)

Using our rules, let us simplify (21) a little bit:

σ2
f =< (f− < f >)2 >=< f 2−2f < f > + < f >2>=< f 2 > − < 2f < f >> + << f >2>

σ2
f =< f 2 > −2 < f >< f > + < f >2=< f 2 > −2 < f >2 + < f >2

σ2
f =< f 2 > − < f >2 (22)

Let us calculate the standard deviation of the scores of the students for the two examples
mentioned above. When all of the students get a score of 20, the probability of that score is
1, while for any other score it is 0, so the average score is
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< S >= P (20)× 20 + 0 = 1× 20 = 20

Let us now calculate < S2 >:

< S2 >= P (20)× 202 + 0 = 1× 400 = 400

and finally, using (22) we can calculate the uncertainty of the score:

σ2
S =< S2 > − < S >2= 400− 202 = 0

and that is what we expect since the score of any student is 20 without any uncertainty.
Now let us consider the second case. The probability of the score 30 is 0.5, so it is for the
score 10, and it is 0 for any other score. For the average we have

< S >= P (30)× 30 + P (10)× 10 + 0 = 0.5× 30 + 0.5× 10 = 20

while for < S2 > we get

< S2 >= P (30)× 302 + P (10)× 102 = 0.5× 900 + 0.5× 100 = 500

so the uncertainty squared is given by

σ2
S =< S2 > − < S >2= 500− 400 = 100

and the uncertainty is

σS =
√

100 = 10

just as we would expect.

4 Probability distributions

Returning to the example of the physics class, let us now assume that the professor is using
a more sophisticated grading system and each grade can be any real number between 0 and
30, not just integers (for example, the first problem may be worth π points). Now we do
not have only finitely many possible outcomes, that is why it makes not a lot of sense to
talk about the probability of a given exact score, that would be 0 if we take the reasonable
assumption that the probabilities of scores very close to each other should be more or less
the same. Indeed, let us consider the scores “very close” to say 20. There are infinitely
many of them, we can take for example 20.1, 20.01, 20.001, and so on. So if they have
the same non-zero probability then their sum would be infinity, which is not allowed since
the normalization condition requires the sum of all possible different probabilities to be 1.
However, we can talk about the probabilities of scores in some small range of the given score.
It is reasonable to ask “What is the probability that a randomly chosen student will have a
score in the range 20 to 20.1?” Let us denote the probability of the score between a and b
by P (a, b). By our assumption that very close scores should have similar probabilities, we
do expect that, for example
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P (20, 20.1) ≈ P (20.1, 20.2)

since these are two ranges of the same size and close to each other. Let us now use our
addition rule of probabilities to calculate P (20, 20.2):

P (20, 20.2) = P (20, 20.1) + P (20.1, 20.2) ≈ P (20, 20.1) + P (20, 20.1) = 2P (20, 20.1)

So by doubling the small range we doubled the probabilities. It is not hard to understand
that the probability of a score around a given value is proportional to the small range itself
that we take around that value:

P (20, 20 + ε) ∝ ε

where ε is a small number. We will call the proportionality coefficient the probability distri-
bution at value 20 and will denote it by p(20):

P (20, 20 + ε) = p(20)ε

We can see that the bigger the probability distribution at 20 the more probable are the
scores around 20. In the same way we define the probability distribution at any real-valued
score x between 0 and 30, so the probability distribution becomes a function of the score
defined on the whole range of scores [0, 30]. Thus, in general

P (x, x+ ε) = p(x)ε (23)

Given the probability distribution p(x) we should be able to find the probability of the
score in any (not necessarily small) range [a, b]. We choose a small ε and divide the range
[a, b] into small ranges of size ε. Let

t0 = a, t1 = a+ ε, t2 = a+ 2ε, . . . , tn = b

Then using our addition rule of probabilities we can write:

P (a, b) = P (t0, tn) = P (t0, t1) + P (t1, t2) + · · ·+ P (tn−1, tn) =
n∑
i=1

P (ti−1, ti)

But each of the ranges [ti−1, ti] is of small size ε so we can use (23) to get

P (ti−1, ti) = p(ti−1)ε

P (a, b) =
n∑
i=1

p(ti−1)ε

In the limit ε → 0 the sum above becomes the integral of the function p(x) from a to b
(that is the Riemann definition of the integral), so finally we get
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P (a, b) =

∫ b

a

p(x) dx (24)

Using (24), it is not hard to get the normalization condition in this case. Indeed, any
score is in the range [0, 30] with certainty, so P (0, 30) = 1 and the normalization condition
takes the form ∫ 30

0

p(x) dx = 1 (25)

Finally, let us calculate the average score. We again divide the whole range into small
pieces:

t0 = 0, t1 = 0 + ε, t2 = 0 + 2ε, . . . , tn = 30

and use the general rule (17) to calculate the average score:

< x >=
n∑
i=0

P (ti−1, ti)ti−1 =
n∑
i=0

p(ti−1)εti−1 =
n∑
i=0

[p(ti−1)ti−1]ε

In the limit ε → 0 the sum above again becomes an integral, but now of the function
p(x)x. We get

< x >=

∫ 30

0

p(x)x dx (26)

Now that we have a good understanding of probability distributions for our example, it is
straightforward to generalize the idea. Consider an experiment where a quantity x is being
measured, and it can have any real value inside the range [A,B] (where A may be equal to
−∞ and B may be equal to +∞). We define the probability distribution p(x) on the range
[A,B] such that the probability of getting a value in a small neighborhood ε of a point x is
given by

P (x, x+ ε) = p(x)ε (27)

Then the probability of getting a value inside any range [a, b] (not necessarily small) is
given by

P (a, b) =

∫ b

a

p(x)dx (28)

The normalization condition takes the form∫ B

A

p(x) dx = 1 (29)

The average value of x is given by

< x >=

∫ B

A

p(x)x dx (30)
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while the average of any function f(x) is given by

< f >=

∫ B

A

p(x)f(x) dx (31)

The formula (22) is still valid for the standard deviation:

σ2
f =< f 2 > − < f >2 (32)

but here we will need to evaluate two integrals, one for < f 2 > and another one for < f >,
before we can calculate the standard deviation.

Comparing the equations above with the corresponding equations for the case of finitely
many possible outcomes, we can see that all we had to do was to consider probability
distributions instead of probabilities, and to replace the finite sums by integrals!

5 Normal distribution

In this section we will consider one of the most important probability distributions in physics
and statistics, called normal distribution or Gaussian distribution, and will apply our general
formulas to do actual calculations for this specific case. The normal distribution is defined
on the whole range (−∞,+∞) of real numbers and is given by

p(x) =
1√

2πσ2
e−(x−µ)2/(2σ2) (33)

where µ and σ are two constants, σ 6= 0 (we will understand their significance later). Let
us examine the graph of this distribution, fig. 1, which has the shape of bell. We can see
that the distribution reaches its maximum at point µ, and decreases as we go away in both
directions. So if an experiment has the normal distribution as the probability distribution
of its outcomes, then we can see that most of the measurements will result in values close
to µ, evenly distributed on both sides of µ, therefore we do expect that the average of x
should be equal to µ. The other thing that we can notice is that the “width” of the curve
is proportional to σ. The smaller σ is, the denser will the outcomes be clustered around µ,
so we do expect that the standard deviation should be proportional to σ (we will explicitly
calculate the average and the standard deviation of x later in this section, and will get that
the standard deviation is exactly equal to σ, that is why we chose the letter σ to denote
that constant). We can see that normal distribution is very useful to describe experiments
the outcomes of which are clustered around some average value. For example, when we are
measuring some quantity in the lab we usually get experimental errors for various reasons, so
if we measure the same thing multiple times, then we get values that are clustered around the
correct value, but not exactly equal to it. The bigger our experimental errors are, the wider
these values are spread around the correct value. The probability distribution describing the
values that we get is normal, with the average equal to the correct value, and the standard
deviation equal to the uncertainty of our measurements. Formally, the normal distribution
is what we get if we add a large number of random variables1. That clarifies the reason why

1This statement is the so-called central limit theorem in statistics, which we will not prove here.
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Figure 1: Normal distribution.

the experimental measurements of a physical quantity are distributed normally, since there
are usually a large number of unknown sources of error, which are added together.

Let us now evaluate some integrals that will be useful in calculations with Gaussian
distributions. Consider first

I0(α) =

∫ +∞

−∞
e−αx

2

dx (34)

where α is any positive number. We will need to use a non-obvious trick to calculate this
integral. The variable x in the equation above is just a dummy variable of integration, so we
are free to call it anything else. Let us rewrite the same equation but with x replaced by y:

I0(α) =

∫ +∞

−∞
e−αy

2

dy (35)

Now let us multiply both sides of equations (34) and (35) together. We get

(I0(α))2 =

∫ +∞

−∞
e−αx

2

dx

∫ +∞

−∞
e−αy

2

dy =

∫ +∞

−∞

∫ +∞

−∞
dx dy e−α(x2+y2) (36)

We treat x and y in (36) as cartesian coordinates and then switch to polar coordinates:

x = r cosφ

y = r sinφ

Then the integration measure becomes (just by calculating the Jacobian of the coordinate
transformation above):

dx dy = r dφ dr
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We also have

x2 + y2 = r2

Plugging in (36) we get

(I0(α))2 =

∫ +∞

0

r dr

∫ 2π

0

dφ e−αr
2

The integrand does not depend on φ, so the integral over φ just gives a factor of 2π:

(I0(α))2 = 2π

∫ +∞

0

r dr e−αr
2

On the other hand

r dr =
1

2
d(r2)

so we get

(I0(α))2 = π

∫ +∞

0

d(r2) e−αr
2

We make a change of the integration variable r2 = t to finally get an integral that is
straightforward to evaluate:

(I0(α))2 = π

∫ +∞

0

dt e−αt = π
e−αt

−α

∣∣∣∣+∞
t=0

=
π

α

So finally

I0(α) =

∫ +∞

−∞
e−αx

2

dx =

√
π

α
(37)

Now let us consider a more general integral, namely

In(α) =

∫ +∞

−∞
xne−αx

2

dx (38)

for any integer n ≥ 0 (clearly this definition agrees with our definition of I0 above for n = 0).
For odd n the function xne−αx

2
is an odd function, i.e. changes the sign if the sign of x is

changed, so the integral becomes 0 (the integral of any odd function in any range [−A,A],
which is symmetric around 0, is 0). For even n we can get the result by simply taking the
derivative of I0(α) with respect to α a few times. Indeed, let us consider

dI0(α)

dα
=

d

dα

∫ +∞

−∞
e−αx

2

dx =

∫ +∞

−∞

d

dα
e−αx

2

dx =

∫ +∞

−∞
(−x2)e−αx

2

dx = −I2(α)

I2(α) = −dI0(α)

dα
(39)
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It is easy to see that if we take another derivative (with a minus sign), then we get I4(α)
and so on. In general

I2n(α) = (−1)n
dnI0(α)

dαn
(40)

But these can be evaluated using the result that we have already obtained for I0(α). For
our future use, let us calculate I2(α):

I2(α) = −dI0(α)

dα
= − d

dα

√
π

α
= −
√
π
dα−1/2

dα
=

1

2

√
πα−3/2 =

1

2

√
π

α3
(41)

Let us now get back to the analysis of the normal distribution. The first thing that we
want to check is if it satisfies the normalization condition. We have∫ +∞

−∞
p(x) dx =

∫ +∞

−∞

1√
2πσ2

e−(x−µ)2/(2σ2) dx

The first step in evaluating integrals with Gaussian distributions is the change of variable
x − µ = t. Clearly dx = dt and t varies in the same range (−∞,+∞). Let us also denote
α = 1/(2σ2). We get

∫ +∞

−∞
p(x) dx =

1√
2πσ2

∫ +∞

−∞
e−αt

2

dt =
1√

2πσ2
I0(α) =

1√
2πσ2

√
π

α
=

√
1

2σ2α
= 1

So indeed, the normalization condition is satisfied. In fact, when writing a probability
distribution, the overall constant factor (e.g. 1√

2πσ2
in our case) is determined by the nor-

malization condition2. Let us now calculate the average and the standard deviation of x
with the normal distribution p(x):

< x >=

∫ +∞

−∞
xp(x) dx =

∫ +∞

−∞
x

1√
2πσ2

e−(x−µ)2/(2σ2) dx

We again do the change of variable x− µ = t and denote α = 1/(2σ2). We get

< x >=
1√

2πσ2

∫ +∞

−∞
(t+ µ)e−αt

2

dt =
1√

2πσ2

∫ +∞

−∞
te−αt

2

dt+ µ
1√

2πσ2

∫ +∞

−∞
e−αt

2

dt

=
1√

2πσ2
I1(α) + µ · 1 = 0 + µ = µ

2One important application of that is the determination of the overall constant factor of the so-called wave
functions in quantum mechanics. The wave function is a complex-valued function of the position such that its
squared absolute value gives the probability distribution of the position of the particle under consideration.
In quantum mechanics the wave-function is determined by solving a linear differential equation, called the
Schrödinger equation, which means that if we have a solution, then any constant times that solution is again
a solution. So by the physical theory itself there is no way of determining the overall constant factor of the
wave-function, and one has to impose the normalization condition on the probability distribution associated
with the wave-function to determine that constant.
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just as we expected. For evaluating the standard deviation of x we first need to calculate
< x2 >. We will use the same change of variable and α below:

< x2 >=

∫ +∞

−∞
x2p(x) dx =

∫ +∞

−∞
x2 1√

2πσ2
e−(x−µ)2/(2σ2) dx =

1√
2πσ2

∫ +∞

−∞
(t+ µ)2e−αt

2

dt

=
1√

2πσ2

∫ +∞

−∞
(t2 + 2µt+ µ2)e−αt

2

dt

=
1√

2πσ2

∫ +∞

−∞
t2e−αt

2

dt+ 2µ
1√

2πσ2

∫ +∞

−∞
te−αt

2

dt+ µ2 1√
2πσ2

∫ +∞

−∞
e−αt

2

dt

=
1√

2πσ2
I2(α) + 2µ

1√
2πσ2

I1(α) + µ2 · 1 =
1√

2πσ2

1

2

√
π

α3
+ 0 + µ2

=
1

2α

√
1

2σ2α
+ µ2 =

1

2α
· 1 + µ2 =

2σ2

2
+ µ2 = σ2 + µ2

Finally, the standard deviation of x is given by

σ2
x =< x2 > − < x >2= σ2 + µ2 − µ2 = σ2

σx = σ

as promised above.
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