Problem 2

In the "rest" frame the velocity of the first car $\left(m_{1}=2000 \mathrm{~kg}\right)$ is $u_{1 x}=$ $20 \mathrm{~m} / \mathrm{s}$, that of the second car $\left(m_{2}=1500 \mathrm{~kg}\right)$ is $u_{2 x}=0$. So the total momentum before the collision is

$$
p_{x}=m_{1} u_{1 x}+m_{2} u_{2 x}=4 \times 10^{4} \mathrm{~kg} \mathrm{~m} / \mathrm{s}
$$

which must be conserved and is the same after the collision. The total mass of the wreck (the two cars stuck together) after the collision is $M=$ $m_{1}+m_{2}=3500 \mathrm{~kg}$. Thus, the velocity of the wreck after the collision is

$$
u_{x}=\frac{p_{x}}{M}=\frac{4 \times 10^{4} \mathrm{~kg} \mathrm{~m} / \mathrm{s}}{3500 \mathrm{~kg}} \approx 11.43 \mathrm{~m} / \mathrm{s}
$$

Now let us transform to the "moving" frame with velocity $v=10 \mathrm{~m} / \mathrm{s}$. Applying the Galilean transformation law (1.2) for velocities we get that the velocity of the first car before the collision in this frame is

$$
u_{1 x}^{\prime}=u_{1 x}-v=10 \mathrm{~m} / \mathrm{s}
$$

the velocity of the second car is

$$
u_{2 x}^{\prime}=u_{2 x}-v=-10 \mathrm{~m} / \mathrm{s}
$$

and that of the wreck is

$$
u_{x}^{\prime}=u_{x}-v \approx 1.43 \mathrm{~m} / \mathrm{s}
$$

The total momentum before the collision in the "moving" frame is thus

$$
p_{x, \text { initial }}^{\prime}=m_{1} u_{1 x}^{\prime}+m_{2} u_{2 x}^{\prime}=5000 \mathrm{~kg} \mathrm{~m} / \mathrm{s}
$$

while after the collision we have

$$
p_{x, \text { final }}^{\prime}=M u_{x}^{\prime}=5000 \mathrm{~kg} \mathrm{~m} / \mathrm{s}
$$

Hence $p_{x, \text { final }}^{\prime}=p_{x, \text { initial }}^{\prime}$ and the momentum is conserved in the "moving" frame. Note that the final result may be slightly off because of the rounding of the numerical results above.

