6-6

$$
\begin{aligned}
\psi(x) & =A \cos k x+B \sin k x \\
\frac{\partial \psi}{\partial x} & =-k A \sin k x+k B \cos k x \\
\frac{\partial^{2} \psi}{\partial x^{2}} & =-k^{2} A \cos k x-k^{2} B \sin k x \\
\left(\frac{-2 m}{\hbar^{2}}\right)(E-U)_{\psi} & =\left(\frac{-2 m E}{\hbar^{2}}\right)(A \cos k x+B \sin k x)
\end{aligned}
$$

The Schrödinger equation is satisfied if $\frac{\partial^{2} \psi}{\partial x^{2}}=\left(\frac{-2 m}{\hbar^{2}}\right)(E-U) \psi$ or

$$
-k^{2}(A \cos k x+B \sin k x)=\left(\frac{-2 m E}{\hbar^{2}}\right)(A \cos k x+B \sin k x)
$$

Therefore $E=\frac{\hbar^{2} k^{2}}{2 m}$.
6-9 $\quad E_{n}=\frac{n^{2} h^{2}}{8 m L^{2}}$, so $\Delta E=E_{2}-E_{1}=\frac{3 h^{2}}{8 m L^{2}}$

$$
\begin{aligned}
& \Delta E=(3) \frac{(1240 \mathrm{eV} \mathrm{~nm} / c)^{2}}{8\left(938.28 \times 10^{6} \mathrm{eV} / c^{2}\right)\left(10^{-5} \mathrm{~nm}\right)^{2}}=6.14 \mathrm{MeV} \\
& \lambda=\frac{h c}{\Delta E}=\frac{1240 \mathrm{eV} \mathrm{~nm}}{6.14 \times 10^{6} \mathrm{eV}}=2.02 \times 10^{-4} \mathrm{~nm}
\end{aligned}
$$

This is the gamma ray region of the electromagnetic spectrum.
6-10 $\quad E_{n}=\frac{n^{2} h^{2}}{8 m L^{2}}$

$$
\frac{h^{2}}{8 m L^{2}}=\frac{\left(6.63 \times 10^{-34} \mathrm{Js}\right)^{2}}{8\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(10^{-10} \mathrm{~m}\right)^{2}}=6.03 \times 10^{-18} \mathrm{~J}=37.7 \mathrm{eV}
$$

(a) $\quad E_{1}=37.7 \mathrm{eV}$

$$
E_{2}=37.7 \times 2^{2}=151 \mathrm{eV}
$$

$$
E_{3}=37.7 \times 3^{2}=339 \mathrm{eV}
$$

$$
E_{4}=37.7 \times 4^{2}=603 \mathrm{eV}
$$

(b) $\quad h f=\frac{h c}{\lambda}=E_{n_{\mathrm{i}}}-E_{n_{\mathrm{f}}}$

$$
\lambda=\frac{h c}{E_{n_{\mathrm{i}}}-E_{n_{\mathrm{f}}}}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{E_{n_{\mathrm{i}}}-E_{n_{\mathrm{f}}}}
$$

For $n_{\mathrm{i}}=4, n_{\mathrm{f}}=1, E_{n_{\mathrm{i}}}-E_{n_{\mathrm{f}}}=603 \mathrm{eV}-37.7 \mathrm{eV}=565 \mathrm{eV}, \lambda=2.19 \mathrm{~nm}$
$n_{\mathrm{i}}=4, n_{\mathrm{f}}=2, \lambda=2.75 \mathrm{~nm}$
$n_{\mathrm{i}}=4, n_{\mathrm{f}}=3, \lambda=4.70 \mathrm{~nm}$
$n_{\mathrm{i}}=3, n_{\mathrm{f}}=1, \lambda=4.12 \mathrm{~nm}$
$n_{\mathrm{i}}=3, n_{\mathrm{f}}=2, \lambda=6.59 \mathrm{~nm}$
$n_{i}=2, n_{\mathrm{f}}=1, \lambda=10.9 \mathrm{~nm}$

$$
\Delta E=\frac{h c}{\lambda}=\left(\frac{h^{2}}{8 m L^{2}}\right)\left[2^{2}-1^{2}\right] \text { and } L=\left[\frac{(3 / 8) h \lambda}{m c}\right]^{1 / 2}=7.93 \times 10^{-10} \mathrm{~m}=7.93 \AA .
$$

(a) Proton in a box of width $L=0.200 \mathrm{~nm}=2 \times 10^{-10} \mathrm{~m}$

$$
\begin{aligned}
E_{1} & =\frac{h^{2}}{8 m_{p} L^{2}}=\frac{\left(6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)^{2}}{8\left(1.67 \times 10^{-27} \mathrm{~kg}\right)\left(2 \times 10^{-10} \mathrm{~m}\right)^{2}}=8.22 \times 10^{-22} \mathrm{~J} \\
& =\frac{8.22 \times 10^{-22} \mathrm{~J}}{1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}}=5.13 \times 10^{-3} \mathrm{eV}
\end{aligned}
$$

(b) Electron in the same box:

$$
E_{1}=\frac{h^{2}}{8 m_{\mathrm{e}} L^{2}}=\frac{\left(6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)^{2}}{8\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(2 \times 10^{-10} \mathrm{~m}\right)^{2}}=1.506 \times 10^{-18} \mathrm{~J}=9.40 \mathrm{eV}
$$

(c) The electron has a much higher energy because it is much less massive.
(a) Still, $\frac{n \lambda}{2}=L$ so $p=\frac{h}{\lambda}=\frac{n h}{2 L}$

$$
\begin{aligned}
& K=\left[c^{2} p^{2}+\left(m c^{2}\right)^{2}\right]^{1 / 2}-\left(m c^{2}\right)=E-m c^{2} \\
& E_{n}=\left[\left(\frac{n h c}{2 L}\right)^{2}+\left(m c^{2}\right)^{2}\right]^{1 / 2}, \\
& K_{n}=\left[\left(\frac{n h c}{2 L}\right)^{2}+\left(m c^{2}\right)^{2}\right]^{1 / 2}-m c^{2}
\end{aligned}
$$

(b) Taking $L=10^{-12} \mathrm{~m}, m=9.11 \times 10^{-31} \mathrm{~kg}$, and $n=1$ we find $K_{1}=4.69 \times 10^{-14} \mathrm{~J}$. The nonrelativistic result is

$$
E_{1}=\frac{h^{2}}{8 m L^{2}}=\frac{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)^{2}}{8\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(10^{-24} \mathrm{~m}^{2}\right)}=6.03 \times 10^{-14} \mathrm{~J}
$$

Comparing this with K_{1}, we see that this value is too big by 29%.
(a) $\quad \psi(x)=A \sin \left(\frac{\pi x}{L}\right), L=3 \AA$. Normalization requires

$$
1=\int_{0}^{L}|\psi|^{2} d x=\int_{0}^{L} A^{2} \sin ^{2}\left(\frac{\pi x}{L}\right) d x=\frac{L A^{2}}{2}
$$

so $A=\left(\frac{2}{L}\right)^{1 / 2}$

$$
P=\int_{0}^{L / 3}|\psi|^{2} d x=\left(\frac{2}{L}\right)^{L \beta} \int_{0}^{2} \sin ^{2}\left(\frac{\pi x}{L}\right) d x=\frac{2}{\pi} \int_{0}^{\pi \beta} \sin ^{2} \phi d \phi=\frac{2}{\pi}\left[\frac{\pi}{6}-\frac{(3)^{1 / 2}}{8}\right]=0.1955 .
$$

(b) $\quad \psi=A \sin \left(\frac{100 \pi x}{L}\right), A=\left(\frac{2}{L}\right)^{1 / 2}$

$$
\begin{aligned}
P & =\frac{2}{L} \int_{0}^{L / 3} \sin ^{2}\left(\frac{100 \pi x}{L}\right) d x=\frac{2}{L}\left(\frac{L}{100 \pi}\right) \int_{0}^{100 \pi / 3} \sin ^{2} \phi d \phi=\frac{1}{50 \pi}\left[\frac{100 \pi}{6}-\frac{1}{4} \sin \left(\frac{200 \pi}{3}\right)\right] \\
& =\frac{1}{3}-\left[\frac{1}{200 \pi}\right] \sin \left(\frac{2 \pi}{3}\right)=\frac{1}{3}-\frac{\sqrt{3}}{400 \pi}=0.3319
\end{aligned}
$$

Since the wavefunction for a particle in a one-dimension box of width L is given by $\psi_{n}=A \sin \left(\frac{n \pi x}{L}\right)$ it follows that the probability density is $P(x)=\left|\psi_{n}\right|^{2}=A^{2} \sin ^{2}\left(\frac{n \pi x}{L}\right)$, which is sketched below:

From this sketch we see that $P(x)$ is a maximum when $\frac{n \pi x}{L}=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \ldots=\pi\left(m+\frac{1}{2}\right)$ or when

$$
x=\frac{L}{n}\left(m+\frac{1}{2}\right) \quad m=0,1,2,3, \ldots, n
$$

Likewise, $P(x)$ is a minimum when $\frac{n \pi x}{L}=0, \pi, 2 \pi, 3 \pi, \ldots=m \pi$ or when

$$
x=\frac{L m}{n} \quad m=0,1,2,3, \ldots, n
$$

6-24
After rearrangement, the Schrödinger equation is $\frac{d^{2} \psi}{d x^{2}}=\left(\frac{2 m}{\hbar^{2}}\right)\{U(x)-E\} \psi(x)$ with $U(x)=\frac{1}{2} m \omega^{2} x^{2}$ for the quantum oscillator. Differentiating $\psi(x)=C x e^{-\alpha x^{2}}$ gives

$$
\frac{d \psi}{d x}=-2 \alpha x \psi(x)+C^{-\alpha x^{2}}
$$

and

$$
\frac{d^{2} \psi}{d x^{2}}=-\frac{2 \alpha x d \psi}{d x}-2 \alpha \psi(x)-(2 \alpha x) C e^{-\alpha x^{2}}=(2 \alpha x)^{2} \psi(x)-6 \alpha \psi(x)
$$

Therefore, for $\psi(x)$ to be a solution requires
$(2 \alpha x)^{2}-6 \alpha=\frac{2 m}{\hbar^{2}}\{U(x)-E\}=\left(\frac{m \omega}{\hbar}\right)^{2} x^{2}-\frac{2 m E}{\hbar^{2}}$. Equating coefficients of like terms gives $2 \alpha=\frac{m \omega}{\hbar}$ and $6 \alpha=\frac{2 m E}{\hbar^{2}}$. Thus, $\alpha=\frac{m \omega}{2 \hbar}$ and $E=\frac{3 \alpha \hbar^{2}}{m}=\frac{3}{2} \hbar \omega$. The normalization integral is $1=\int_{-\infty}^{\infty}|\psi(x)|^{2} d x=2 C^{2} \int x^{2} e^{-2 \alpha x^{2}} d x$ where the second step follows from the symmetry of the integrand about $x=0$. Identifying a with 2α in the integral of Problem 6-32 gives $1=2 C^{2}\left(\frac{1}{8 \alpha}\right)\left(\frac{\pi}{2 \alpha}\right)^{1 / 2}$ or $C=\left(\frac{32 \alpha^{3}}{\pi}\right)^{1 / 4}$.

6-25 At its limits of vibration $x= \pm A$ the classical oscillator has all its energy in potential form: $E=\frac{1}{2} m \omega^{2} A^{2}$ or $A=\left(\frac{2 E}{m \omega^{2}}\right)^{1 / 2}$. If the energy is quantized as $E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega$, then the corresponding amplitudes are $A_{n}=\left[\frac{(2 n+1) \hbar}{m \omega}\right]^{1 / 2}$.
(a) Normalization requires
$1=\int_{-\infty}^{\infty}|\psi|^{2} d x=C^{2} \int_{0}^{\infty} e^{-2 x}\left(1-e^{-x}\right)^{2} d x=C^{2} \int_{0}^{\infty}\left(e^{-2 x}-2 e^{-3 x}+e^{-4 x}\right) d x$. The integrals are elementary and give $1=C^{2}\left\{\frac{1}{2}-2\left(\frac{1}{3}\right)+\frac{1}{4}\right\}=\frac{C^{2}}{12}$. The proper units for C are those of (length $)^{-1 / 2}$ thus, normalization requires $C=(12)^{1 / 2} \mathrm{~nm}^{-1 / 2}$.
(b) The most likely place for the electron is where the probability $|\psi|^{2}$ is largest. This is also where ψ itself is largest, and is found by setting the derivative $\frac{d \psi}{d x}$ equal zero:

$$
0=\frac{d \psi}{d x}=C\left\{-e^{-x}+2 e^{-2 x}\right\}=C e^{-x}\left\{2 e^{-x}-1\right\}
$$

The RHS vanishes when $x=\infty$ (a minimum), and when $2 e^{-x}=1$, or $x=\ln 2 \mathrm{~nm}$. Thus, the most likely position is at $x_{p}=\ln 2 \mathrm{~nm}=0.693 \mathrm{~nm}$.
(c) The average position is calculated from

$$
\langle x\rangle=\int_{-\infty}^{\infty} x|\psi|^{2} d x=C^{2} \int_{0}^{\infty} x e^{-2 x}\left(1-e^{-x}\right)^{2} d x=C^{2} \int_{0}^{\infty} x\left(e^{-2 x}-2 e^{-3 x}+e^{-4 x}\right) d x
$$

The integrals are readily evaluated with the help of the formula $\int_{0}^{\infty} x e^{-a x} d x=\frac{1}{a^{2}}$ to

$$
\begin{gathered}
\text { get }\langle x\rangle=C^{2}\left\{\frac{1}{4}-2\left(\frac{1}{9}\right)+\frac{1}{16}\right\}=C^{2}\left\{\frac{13}{144}\right\} . \text { Substituting } C^{2}=12 \mathrm{~nm}^{-1} \text { gives } \\
\langle x\rangle=\frac{13}{12} \mathrm{~nm}=1.083 \mathrm{~nm} .
\end{gathered}
$$

We see that $\langle x\rangle$ is somewhat greater than the most probable position, since the probability density is skewed in such a way that values of x larger than x_{p} are weighted more heavily in the calculation of the average.

6-31 The symmetry of $\|\left.(x)\right|^{2}$ about $x=0$ can be exploited effectively in the calculation of average values. To find $\langle x\rangle$

$$
\langle x\rangle=\left.\int_{-\infty}^{\infty} x \psi(x)\right|^{2} d x
$$

We notice that the integrand is antisymmetric about $x=0$ due to the extra factor of x (an odd function). Thus, the contribution from the two half-axes $x>0$ and $x<0$ cancel exactly, leaving $\langle x\rangle=0$. For the calculation of $\left\langle x^{2}\right\rangle$, however, the integrand is symmetric and the half-axes contribute equally to the value of the integral, giving

$$
\langle x\rangle=\int_{0}^{\infty} x^{2}|\psi|^{2} d x=2 C^{2} \int_{0}^{\infty} x^{2} e^{-2 x / x_{0}} d x
$$

Two integrations by parts show the value of the integral to be $2\left(\frac{x_{0}}{2}\right)^{3}$. Upon substituting for C^{2}, we get $\left\langle x^{2}\right\rangle=2\left(\frac{1}{x_{0}}\right)(2)\left(\frac{x_{0}}{2}\right)^{3}=\frac{x_{0}^{2}}{2}$ and $\Delta x=\left(\left\langle x^{2}\right\rangle-\langle x\rangle^{2}\right)^{1 / 2}=\left(\frac{x_{0}^{2}}{2}\right)^{1 / 2}=\frac{x_{0}}{\sqrt{2}}$. In calculating the probability for the interval $-\Delta x$ to $+\Delta x$ we appeal to symmetry once again to write

$$
P=\int_{-\Delta x}^{+\Delta x}|\mu|^{2} d x=2 C^{2} \int_{0}^{\Delta x} e^{-2 x \mid x_{0}} d x=-\left.2 C^{2}\left(\frac{x_{0}}{2}\right) e^{-2 x / x_{0}}\right|_{0} ^{\Delta x}=1-e^{-\sqrt{2}}=0.757
$$

or about 75.7% independent of x_{0}.
6-32 The probability density for this case is $\left|\psi_{0}(x)\right|^{2}=C_{0}^{2} e^{-a x^{2}}$ with $C_{0}=\left(\frac{a}{\pi}\right)^{1 / 4}$ and $a=\frac{m \omega}{\hbar}$. For the calculation of the average position $\langle x\rangle=\left.\int_{-\infty}^{\infty} x \psi_{0}(x)\right|^{2} d x$ we note that the integrand is an odd function, so that the integral over the negative half-axis $x<0$ exactly cancels that over the positive half-axis $(x>0)$, leaving $\langle x\rangle=0$. For the calculation of $\left\langle x^{2}\right\rangle$, however, the integrand $x^{2}\left|\psi_{0}\right|^{2}$ is symmetric, and the two half-axes contribute equally, giving

$$
\left\langle x^{2}\right\rangle=2 C_{0}^{2} \int_{0}^{\infty} x^{2} e^{-a x^{2}} d x=2 C_{0}^{2}\left(\frac{1}{4 a}\right)\left(\frac{\pi}{a}\right)^{1 / 2} .
$$

Substituting for C_{0} and a gives $\left\langle x^{2}\right\rangle=\frac{1}{2 a}=\frac{\hbar}{2 m \omega}$ and $\Delta x=\left(\left\langle x^{2}\right\rangle-\langle x\rangle^{2}\right)^{1 / 2}=\left(\frac{\hbar}{2 m \omega}\right)^{1 / 2}$.
(a) Since there is no preference for motion in the leftward sense vs. the rightward sense, a particle would spend equal time moving left as moving right, suggesting $\left\langle p_{x}\right\rangle=0$.
(b) To find $\left\langle p_{x}^{2}\right\rangle$ we express the average energy as the sum of its kinetic and potential energy contributions: $\langle E\rangle=\left\langle\frac{p_{x}^{2}}{2 m}\right\rangle+\langle U\rangle=\frac{\left\langle p_{x}^{2}\right\rangle}{2 m}+\langle U\rangle$. But energy is sharp in the oscillator ground state, so that $\langle E\rangle=E_{0}=\frac{1}{2} \hbar \omega$. Furthermore, remembering that $U(x)=\frac{1}{2} m \omega^{2} x^{2}$ for the quantum oscillator, and using $\left\langle x^{2}\right\rangle=\frac{\hbar}{2 m \omega}$ from Problem 6-32, gives $\langle U\rangle=\frac{1}{2} m \omega^{2}\left\langle x^{2}\right\rangle=\frac{1}{4} \hbar \omega$. Then
$\left\langle p_{x}^{2}\right\rangle=2 m\left(E_{0}-\langle U\rangle\right)=2 m\left(\frac{\hbar \omega}{4}\right)=\frac{m \hbar \omega}{2}$.
(c) $\quad \Delta p_{x}=\left(\left\langle p_{x}^{2}\right\rangle-\left\langle p_{x}\right\rangle^{2}\right)^{1 / 2}=\left(\frac{m \hbar \omega}{2}\right)^{1 / 2}$

6-34 From Problems 6-32 and 6-33, we have $\Delta x=\left(\frac{\hbar}{2 m \omega}\right)^{1 / 2}$ and $\Delta p_{x}=\left(\frac{m \hbar \omega}{2}\right)^{1 / 2}$. Thus, $\Delta x \Delta p_{x}=\left(\frac{\hbar}{2 m \omega}\right)^{1 / 2}\left(\frac{m \hbar \omega}{2}\right)^{1 / 2}=\frac{\hbar}{2}$ for the oscillator ground state. This is the minimum uncertainty product permitted by the uncertainty principle, and is realized only for the ground state of the quantum oscillator.

