
 
6-6 

      

! 

" x( ) = Acos kx + Bsin kx

#"

# x
= $kA sin kx + kB cos kx

#2"

# x
2

= $k
2
Acos kx$ k

2
Bsin kx

$2m

h
2

% 

& 
' 

( 

) 
* E $U( )" =

$2mE

h
2

% 

& 
' 

( 

) 
* Acoskx + Bsin kx( )

 

 

 The Schrödinger equation is satisfied if 
      

! 

"2#

" x
2

=
$2m

h
2

% 

& ' 
( 

) * 
E $U( )#  or  

 

      

! 

"k
2

Acos kx + Bsin kx( ) =
"2mE

h
2

# 

$ % 
& 

' ( 
Acos kx + Bsin kx( ) . 

 

 Therefore 
      

! 

E =
h

2
k

2

2m
. 

6-9 
    

! 

En =
n

2
h

2

8mL
2

, so 
    

! 

"E = E2 #E1 =
3h

2

8mL
2

 

 

    

! 

"E = 3( )
1240 eV nm c( )

2

8 938.28 # 10
6

 eV c
2( ) 10

$5
 nm( )

2
= 6.14 MeV  

 
    

! 

" =
hc

# E
=

1240 eV nm

6.14 $ 10
6

 eV
= 2.02 $ 10

%4
 nm  

 This is the gamma ray region of the electromagnetic spectrum. 
 

6-10 
    

! 

En =
n

2
h

2

8mL
2

 

 

    

! 

h
2

8mL
2 =

6.63 " 10#34  Js( )
2

8 9.11 " 10#31  kg( ) 10#10  m( )
2 = 6.03 " 10#18  J = 37.7  eV  

 
(a) 

    

! 

E1 = 37.7 eV  

 

    

! 

E
2

= 37.7 " 2
2 = 151 eV

E3 = 37.7 " 3
2

= 339 eV

E4 = 37.7 " 4
2

= 603 eV

 

 

(b) 
    

! 

hf =
hc

"
= En

i
#En

f
 

 
    

! 

" =
hc

En
i
#En

f

=
1 240 eV $nm

En
i
#En

f

 

 For 
    

! 

ni = 4 , 
    

! 

nf = 1 , 
    

! 

En
i
"En

f
= 603 eV " 37.7  eV = 565 eV ,   

! 

" = 2.19 nm  
 

    

! 

ni = 4 , 
    

! 

nf = 2 ,   

! 

" = 2.75 nm  
 

    

! 

ni = 4 , 
    

! 

nf = 3 ,   

! 

" = 4.70 nm  
 

    

! 

ni = 3 , 
    

! 

nf = 1 ,   

! 

" = 4.12 nm  
 

    

! 

ni = 3 , 
    

! 

nf = 2 ,   

! 

" = 6.59 nm  
 

    

! 

ni = 2 , 
    

! 

nf = 1 ,   

! 

" = 10.9 nm  



6-12 
    

! 

"E =
hc

#
=

h
2

8mL
2

$ 

% 
& 

' 

( 
) 2

2 *1
2[ ]  and 

    

! 

L =
3 8( )h"

mc

# 

$ 
% 
% 

& 

' 
( 
( 

1 2

= 7.93 ) 10
*10

 m = 7.93 Å. 

 
6-13 (a) Proton in a box of width     

! 

L = 0.200 nm = 2 " 10
#10

 m  
 

    

! 

E1 =
h

2

8mpL2
=

6.626 " 10#34  J $ s( )
2

8 1.67 " 10#27  kg( ) 2 " 10#10  m( )
2

= 8.22 " 10#22  J

=
8.22 " 10#22  J

1.60 " 10#19  J eV
= 5.13 " 10#3  eV

 

 
(b) Electron in the same box: 
 

    

! 

E1 =
h

2

8meL
2 =

6.626 " 10#34  J $s( )
2

8 9.11" 10#31  kg( ) 2 " 10#10  m( )
2 = 1.506 " 10#18  J = 9.40 eV . 

 
(c) The electron has a much higher energy because it is much less massive. 

 

6-14 (a) Still, 
    

! 

n"

2
= L  so 

    

! 

p =
h

"
=

nh

2L
 

 

    

! 

K = c2 p2
+ mc2( )

2" 

# $ 
% 

& ' 

1 2

( mc 2( ) = E (mc 2

En =
nhc

2L

) 

* + 
, 

- . 

2

+ mc2( )
2

" 

# 

$ 
$ 

% 

& 

' 
' 

1 2

,

Kn =
nhc

2L

) 

* + 
, 

- . 

2

+ mc2( )
2

" 

# 

$ 
$ 

% 

& 

' 
' 

1 2

(mc2

 

 
(b) Taking     

! 

L = 10
"12

 m ,     

! 

m = 9.11" 10#31  kg , and     

! 

n = 1  we find     

! 

K1 = 4.69 " 10
#14

 J . 
The nonrelativistic result is 

 

 
    

! 

E1 =
h

2

8mL
2 =

6.63 " 10#34  J $ s( )
2

8 9.11" 10#31  kg( ) 10#24  m2( )
= 6.03 " 10#14  J  

 
 Comparing this with 

    

! 

K1 , we see that this value is too big by 29%. 
 

6-16 (a) 
    

! 

" x( ) = Asin
# x

L

$ 

% 
& 

' 

( 
) ,     

! 

L = 3  Å. Normalization requires  

 

 
    

! 

1 = "
2

dx

0

L

# = A
2

sin
2
$ x

L

% 

& 
' 

( 

) 
* dx

0

L

# =
LA

2

2
 

 

 so 
    

! 

A =
2

L

" 

# $ 
% 

& ' 

1 2

 

 



 
    

! 

P = "
2
dx

0

L 3

# =
2

L

$ 

% & 
' 

( ) 
sin

2
* x

L

$ 

% 
& 

' 

( 
) dx

0

L 3

# =
2

*
sin

2 +d+
0

* 3

# =
2

*

*

6
,

3( )
1 2

8

- 

. 

/ 
/ 

0 

1 

2 
2 

= 0.195 5 . 

 

(b) 
    

! 

" = Asin
100# x

L

$ 

% 
& 

' 

( 
) , 

    

! 

A =
2

L

" 

# $ 
% 

& ' 

1 2

 

 

 

    

! 

P =
2

L
sin

2
100" x

L

# 

$ 
% 

& 

' 
( dx

0

L 3

) =
2

L

L

100"

# 

$ % 
& 

' ( 
sin

2 *d*
0

100" 3

) =
1

50"

100"

6
+

1

4
sin

200"

3

# 

$ % 
& 

' ( 
, 

- 
. 

/ 

0 
1 

=
1

3
+

1

200"

, 

- 
. 

/ 

0 
1 sin

2"

3

# 

$ % 
& 

' ( 
=

1

3
+

3

400"
= 0.331 9

 

6-18 Since the wavefunction for a particle in a one-dimension box of width L is given by 

    

! 

" n = Asin
n# x

L

$ 

% 
& 

' 

( 
)  it follows that the probability density is 

    

! 

P x( ) = " n

2

= A
2

sin
2

n# x

L

$ 

% 
& 

' 

( 
) , 

which is sketched below: 
 

   

! 

"

2   

! 

3"

2   

! 

5"

2

" 2" 3"

P(x)

  

! 

n" x

L  
 

 From this sketch we see that 
  

! 

P x( )  is a maximum when 
      

! 

n" x

L
=
"

2
,

3"

2
,

5"

2
, K =" m +

1

2

# 

$ % 
& 

' ( 
 

or when 

 
    

! 

x =
L

n
m +

1

2

" 

# $ 
% 

& ' 
  

      

! 

m = 0, 1, 2, 3, K , n . 

 

 Likewise, 
  

! 

P x( )  is a minimum when 
      

! 

n" x

L
= 0, " , 2" , 3" , K = m"  or when 

 

 
  

! 

x =
Lm

n
  

      

! 

m = 0, 1, 2, 3, K , n  

6-24 After rearrangement, the Schrödinger equation is 
      

! 

d
2"

dx
2

=
2m

h
2

# 

$ % 
& 

' ( 
U x( ) )E{ }" x( )  with 

    

! 

U x( ) =
1

2
m"

2
x

2  for the quantum oscillator. Differentiating 
    

! 

" x( ) = Cxe
#$ x

2

 gives  
 

 
    

! 

d"

dx
= #2$ x" x( ) + C

#$ x
2

 
 
 and 
 



 
    

! 

d
2
"

dx
2

= #
2$ xd"

dx
# 2$" x( ) # 2$ x( )Ce

#$ x
2

= 2$ x( )
2

" x( ) # 6$" x( ) . 
 
 Therefore, for 

  

! 

" x( )  to be a solution requires 

      

! 

2" x( )2

# 6" =
2m

h
2

U x( ) #E{ } =
m$

h

% 

& ' 
( 

) * 

2

x
2 #

2mE

h
2

. Equating coefficients of like terms gives 

      

! 

2" =
m#

h
 and 

      

! 

6" =
2mE

h
2

. Thus, 
      

! 

" =
m#

2h
 and 

      

! 

E =
3" h

2

m
=

3

2
h# . The normalization 

integral is 
    

! 

1 = " x( )
2

dx

#$

$

% = 2C
2

x
2
e
#2& x

2

% dx  where the second step follows from the 

symmetry of the integrand about     

! 

x = 0 . Identifying a with   

! 

2" in the integral of Problem 

6-32 gives 
    

! 

1 = 2C
2 1

8"

# 

$ % 
& 

' ( 
)

2"

# 

$ % 
& 

' ( 

1 2

 or 
    

! 

C =
32"3

#

$ 

% 
& 

' 

( 
) 

1 4

. 

 
6-25 At its limits of vibration   

! 

x = ±A  the classical oscillator has all its energy in potential form: 

    

! 

E =
1

2
m"

2
A

2  or 
    

! 

A =
2E

m" 2

# 

$ % 
& 

' ( 

1 2

. If the energy is quantized as 
      

! 

En = n +
1

2

" 

# $ 
% 

& ' 
h( , then the 

corresponding amplitudes are 
      

! 

An =
2n + 1( )h

m"

# 

$ 
% 

& 

' 
( 

1 2

. 

 
 
6-29 (a) Normalization requires 

    

! 

1 = "
2

dx

#$

$

% = C
2

e
#2x

1 # e
#x( )

2

dx

0

$

% = C
2

e
#2x

# 2e
#3x

+ e
#4x( )dx

0

$

% . The integrals are 

elementary and give 
    

! 

1 = C
2 1

2
" 2

1

3

# 

$ % 
& 

' ( 
+

1

4

) 
* 
+ 

, 
- 
. 

=
C

2

12
. The proper units for C are those 

of   

! 

length( )"1 2  thus, normalization requires 
    

! 

C = 12( )
1 2

 nm
"1 2 . 

 
(b) The most likely place for the electron is where the probability 

  

! 

"
2  is largest. This 

is also where 

! 

"  itself is largest, and is found by setting the derivative 
  

! 

d"

dx
 equal 

zero: 
 

 
    

! 

0 =
d"

dx
= C #e

#x + 2e
#2x{ } = Ce

#x
2e

#x
# 1{ } . 

 
 The RHS vanishes when   

! 

x = "  (a minimum), and when     

! 

2e
"x

= 1 , or     

! 

x = ln 2 nm . 
Thus, the most likely position is at 

    

! 

xp = ln 2 nm = 0.693 nm . 
 
(c) The average position is calculated from 
 

 
    

! 

x = x"
2

dx

#$

$

% = C
2

xe
#2x

1 # e
#x( )

2

dx

0

$

% = C
2

x e
#2x

# 2e
#3x

+ e
#4x( )dx

0

$

% . 

 



 The integrals are readily evaluated with the help of the formula 
    

! 

xe
"ax

dx

0

#

$ =
1

a
2

 to 

get 
    

! 

x = C
2 1

4
" 2

1

9

# 

$ % 
& 

' ( 
+

1

16

) 
* 
+ 

, 
- 
. 

= C
2 13

144

) 
* 
+ 

, 
- 
. 

. Substituting     

! 

C
2

= 12 nm
"1  gives  

 

 
    

! 

x =
13

12
 nm = 1.083  nm . 

 
 We see that 

  

! 

x  is somewhat greater than the most probable position, since the 
probability density is skewed in such a way that values of x larger than 

  

! 

xp  are 
weighted more heavily in the calculation of the average. 

 
6-31 The symmetry of 

    

! 

" x( )
2

 about     

! 

x = 0  can be exploited effectively in the calculation of 
average values. To find 

  

! 

x  
 

 
    

! 

x = x" x( )
2

dx

#$

$

%  

 
 We notice that the integrand is antisymmetric about     

! 

x = 0  due to the extra factor of x (an 
odd function). Thus, the contribution from the two half-axes     

! 

x > 0  and     

! 

x < 0  cancel 
exactly, leaving 

    

! 

x = 0 . For the calculation of 
    

! 

x
2 , however, the integrand is symmetric 

and the half-axes contribute equally to the value of the integral, giving 
 

 
    

! 

x = x
2
"

2
dx

0

#

$ = 2C
2

x
2
e
%2x x

0 dx

0

#

$ . 

 

 Two integrations by parts show the value of the integral to be 
    

! 

2
x0

2

" 

# $ 
% 

& ' 

3

. Upon substituting 

for     

! 

C
2 , we get 

    

! 

x
2

= 2
1

x0

" 

# $ 
% 

& ' 
2( )

x0

2

" 

# $ 
% 

& ' 

3

=
x0

2

2
 and 

    

! 

"x = x
2 # x

2( )
1 2

=
x0

2

2

$ 

% 
& 

' 

( 
) 

1 2

=
x0

2
. In 

calculating the probability for the interval   

! 

"#x  to   

! 

+"x  we appeal to symmetry once 
again to write 

 

 
    

! 

P = "
2
dx

#$x

+$x

% = 2C
2

e
#2x x

0 dx

0

$x

% = #2C
2 x0

2

& 

' ( 
) 

* + 
e
#2x x

0

0

$x

= 1 # e
# 2

= 0.757  

 
 or about 75.7% independent of 

    

! 

x0 . 
 

6-32 The probability density for this case is 
    

! 

" 0 x( )
2

= C0

2
e
#ax

2

 with 
    

! 

C0 =
a

"

# 

$ % 
& 

' ( 

1 4

 and 
    

! 

a =
m"

h
. 

For the calculation of the average position 
    

! 

x = x" 0 x( )
2

dx

#$

$

%  we note that the integrand 

is an odd function, so that the integral over the negative half-axis     

! 

x < 0  exactly cancels 
that over the positive half-axis (    

! 

x > 0 ), leaving 
    

! 

x = 0 . For the calculation of 
    

! 

x
2 , 

however, the integrand 
    

! 

x
2
" 0

2

 is symmetric, and the two half-axes contribute equally, 
giving 

 



 
    

! 

x
2

= 2C0

2
x

2
e
"ax

2

dx

0

#

$ = 2C0

2 1

4a

% 

& ' 
( 

) * 
+

a

% 

& ' 
( 

) * 

1 2

. 

 

 Substituting for 
    

! 

C0  and a gives 
      

! 

x
2

=
1

2a
=

h

2m"
 and 

      

! 

"x = x
2 # x

2( )
1 2

=
h

2m$

% 

& ' 
( 

) * 

1 2

. 

6-33 (a) Since there is no preference for motion in the leftward sense vs. the rightward 
sense, a particle would spend equal time moving left as moving right, suggesting 

    

! 

px = 0 . 
 
(b) To find 

    

! 

px
2  we express the average energy as the sum of its kinetic and 

potential energy contributions: 
    

! 

E =
px

2

2m
+ U =

px
2

2m
+ U . But energy is sharp 

in the oscillator ground state, so that 
      

! 

E = E0 =
1

2
h" . Furthermore, remembering 

that 
    

! 

U x( ) =
1

2
m"

2
x

2  for the quantum oscillator, and using 
      

! 

x
2

=
h

2m"
 from 

Problem 6-32, gives 
      

! 

U =
1

2
m"

2
x

2
=

1

4
h" . Then 

      

! 

px
2

= 2m E0 " U( ) = 2m
h#

4

$ 

% & 
' 

( ) 
=

mh#

2
. 

 

(c) 
      

! 

"px = px
2 # px

2( )
1 2

=
mh$

2

% 

& ' 
( 

) * 

1 2

 

 

6-34 From Problems 6-32 and 6-33, we have 
      

! 

"x =
h

2m#

$ 

% & 
' 

( ) 

1 2

 and 
      

! 

"px =
mh#

2

$ 

% & 
' 

( ) 

1 2

. Thus, 

      

! 

"x"px =
h

2m#

$ 

% & 
' 

( ) 

1 2
mh#

2

$ 

% & 
' 

( ) 

1 2

=
h

2
 for the oscillator ground state. This is the minimum 

uncertainty product permitted by the uncertainty principle, and is realized only for the 
ground state of the quantum oscillator. 

 
 

 
 

 
 

 


