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Experiment 1:  RC Circuits 
 
Introduction 
 
 In this laboratory you will examine a simple circuit consisting of only one capacitor and one 
resistor.  By applying a constant1 voltage (also called DC or direct current) to the circuit, you will 
determine the capacitor discharge decay time (defined later) and compare this value to that which is 
expected.  Alternately, by applying alternating current (AC) and varying the frequency of the current 
you will be able to determine the decay time in another, independent way. 
 
 You will determine these expected values using formulas derived from Ohm’s law, Kirchhoff’s 
Law and the concept of complex impedance.  These concepts will be detailed further in the laboratory. 
 
 In addition to these new ideas you will need to recall the concepts from last week’s lab.  
Specifically you will use the multimeter and oscilloscope during this lab.  Recall that the oscilloscope 
must be calibrated at the beginning of any experiment in which it is used. 
 
 
1 Physics 
 
1.1 Electrical Circuit Definitions 
 Any section of a circuit that is at constant voltage is called a “node.”  An example is a piece of wire 
joining two or more resistors.  The sum of all the currents flowing into a node must be zero since charge 
can neither be created nor destroyed in a circuit. 
 
 Circuit “elements” are resistors, capacitors, and inductors.  One might consider wires connecting 
these elements to be a fourth circuit element but since idealized wires have no resistance, capacitance or 
inductance they are represented only by lines in a circuit diagram and do not appear in the equations 
relating current and voltage in circuits. 
  
 
 
 
 
 
 
 
  

     
Figure 1 Resistors in series                        Figure 2  Resistors R4 and R5 in parallel 

 

                                                 
1 Applying a square wave to the circuit is not exactly applying constant voltage.  However, if the period 
of the square wave is long enough, you will not have to worry about what happens at the end when the 
voltage switches from one constant voltage to another. 
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 Two circuit elements are in series if all of the current flowing through one also flows through the 
other.  In Figure 1, all of the current flowing from the battery must also flow through the resistors R1 and 
R2.  They are “in series.”  In Figure 2, the current flowing through R4 does not flow through R5 (and vice 
versa) so that R4 and R5 are not in series. 
  
 Two circuit elements are in parallel if they are connected to the same nodes. R4 and R5 in Figure 2 
are both connected to nodes A and B.  This then also requires that the potential difference (voltage drop) 
across all elements connected in parallel must be the same. 
  
 In more complicated circuits you will need to generalize the notions of series and parallel.  For 
example, in Figure 2, the equivalent resistance of R4  and R5  in parallel, 

1 R4 +1 R5( )−1
= R4 * R5 R4 + R5( ), is in series with R3 . 

 
 
1.2 Ohm’s Law 
 Ohm’s Law states that for a resistor the current and voltage are in phase and proportional.  That is: 
 

V = I * R  
 
 

1.3 Kirchhoff’s Law 
This law or rule states:  “The algebraic sum of the changes in potential encountered in a complete 

traversal of any closed circuit must be zero.”  The adjective, algebraic, is added to indicate that the sign 
of the potential change encountered in crossing various parts of the circuit must be accounted for.   For 
example, if two batteries are in the circuit but placed such that their potentials tend to force current in 
opposite directions, then the potentials must have opposite sign and the “algebraic” sum yields the net 
potential difference across both.  Thus, the elements which cause a change in voltage in any circuit loop 
(e.g. resistors, capacitors, inductors and batteries) will be signed and will sum to zero. 
 
 
1.4 Common Grounding 

In numerous circuits that you will construct you will apply a voltage to an entire circuit and also 
measure the voltage over specific current elements.  Both the applied voltage and the device which 
measures the voltage (typically the oscilloscope) will have one end which fixes the voltage to the 
common ground voltage.  The common ground voltage is our standard for zero voltage and the voltage 
you record is measured relative to that. 

 
Below there is an example of a circuit with two resistors with AC voltage (from the function 

generator) applied to a resistor and capacitor in series.  Figure 3 shows the circuit in which we measure 
the voltage of the capacitor.  Notice that the ground of the function generator and the ground of the 
oscilloscope are next to each other in the circuit diagram. 

 
Figure 4 measures the voltage over the resistor but in this case one of the grounds is one side of the 

capacitor and the other is on the opposite side of the capacitor.  This will measure the voltage over the 
resistor, but in effect removes the capacitor from the circuit because the voltage difference over the 
capacitor is close to zero.  This is a short circuit. 
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Figure 5 also records the voltage over the resistor.  However, since we have swapped the resistor 

and the capacitor, the grounds are at the same point in the circuit.  Thus, you are measuring the voltage 
of the resistor in an RC circuit.  Be careful when measuring the voltage of the different elements in your 
circuit and place the grounds in the appropriate places so that you do not short your circuit (as is the case 
in Figure 4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3  Voltage over the capacitor is recorded. 
 
 

 

 
 
Figure 4  Voltage over resistor is measured 
while circuit is ‘shorted’. 

Figure 5  Voltage over resistor is measured 
properly in RC circuit.
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Question 1.1 
 
What is the propagated error of the time decay, τ , in equation 1?  That is, what is ∆τ ? 

2 Mathematical Applications 
 
2.1 The Discharging (Charging) RC Circuit 
 A capacitor can be charged by connecting its two terminals to the two terminals of a battery.  If the 
capacitor is then disconnected from the battery it will retain this charge and the potential across the 
capacitor will remain that of the battery.  If a resistor is then connected across the capacitor, charge will 
flow through the resistor until the potential difference between the two terminals goes to zero.  This 
series RC circuit is shown in Figure 6.  The potential will decrease with time according to the relation: 
 

V (t) = V0e
− t /τ , where τ = RC  (1) 

 
V0  represents the voltage at time t = 0, and τ represents the “time constant” or time that it takes for the 
voltage to decrease by a factor of 1/e.   
 

 

 
Figure 6 Simple RC circuit 

 
 The time dependence of the voltage is derived using Kirchhoff’s law and the relations between 
current and voltage in the resistor and capacitor.  Traversing the loop of Figure 6 clockwise, Kirchhoff’s 
law tells us that: 
 

VR +VC = 0  (2) 

 
where VR and VC represent voltage drop across the resistor or capacitor, respectively. 
 
 It is important to note that if one applies a constant voltage to this circuit (which is what you will be 
asked to do) then the additional voltage source will be an additional term in the sum.  This term is will 
be a constant.  The result of the forthcoming differential equation is the same with the addition of a 
constant. 
 
 These circuit elements are related to their voltages in the following ways: 
 

VR = IRR
QC = CVC

 (3) 
(4) 
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where QC is charge accumulation in the capacitor.  Substituting these two equations into the Kirchhoff 
equation and solving for IR yields 

 

IR =
−1
RC

QC  (5) 

 
Since R and C are in series 

 
dQC

dt
= IR =

−1
RC

QC  (6) 

 
Using the initial conditions Q=Q0 at t=0 the charge Q on the capacitor at some later time t is found by 
integration 
 

dQ
Q

=
−1
RC

dt
0

t

∫
Q0

Q

∫

ln
Q
Q0

⎛

⎝⎜
⎞

⎠⎟
=
−1
RC

t

Q = Q0e
− t /τ

 
(7) 

 
Since 
 

IR =
dQ
dt

= Q0
−1
τ

⎛
⎝⎜

⎞
⎠⎟

e− t /τ  (8) 

 
we can determine the following: 
 

VR = IRR = Q0R
−1
τ

⎛
⎝⎜

⎞
⎠⎟

e−t /τ =
−Q0

C
e− t /τ = V0e

−t /τ  (9) 

 
Equation (9) is the desired equation.  Recall that if the voltage is not zero but still constant, then the 
voltage equation above will be the same with the addition of a constant term.   
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Question 1.2 
 
What is the propagated error of the time decay, τ , from the two point method (equation 10)? 

 
Figure 7  Exponential decay of a capacitor potential  

 
 
 In the lab, you will be asked to determine τ from measurements of V(t), INDEPENDENT of any 
knowledge of R and C. There are several ways to do this but the properties of the exponential function 
allow you to do it “simply” by measuring the voltage at only two times, t1 , and t2 .  According to 
equation 1, the voltages at these times will be given by: 
 

V1 = V0e
− t1 /τ  and  V2 = V0e

− t2 /τ

V1

V2

= e(t2 − t1 )/τ

τ =
t2 − t1

ln(V1 / V2 )

 
(10) 

  
An especially simple pair of points can be chosen such that the second voltage is equal to the first 

voltage divided by e.  The time between the two points will then be equal to τ.   The important property 
of the exponential is that the ratio of voltages at two different times does not depend on when you begin 
the measurements.  It depends only on the time between them. 
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2.2 Complex Impedance 
When one is interested in finding the voltage of an element in an AC circuit, the method of complex 

impedance is very useful.  In general, the complex impedance is defined as follows: 
  

Z =
V
~

I
~  (11) 

 

where Z  is complex (of the form a + ib  where a & b  are real numbers) and V
~

& I
~

 are of the form 

V0e
iω t  & I0e

i(ω t+φ ) .  The angle φ  is the amount by which V
~

& I
~

 are out of phase.  Impedance is the ratio 
and relative phase of voltage and current.  The important point to realize can be thought of as a 
generalization of resistance in AC circuits. 
 
 Taking a quick look at Ohm’s Law you might guess that the impedance of the resistor is completely 
real and equal to the resistance.  Other relevant impedances will only be listed here. 
       

ZR = R;               ZC =
1

iωC
;             ZL = iωL;  (12) 

 
 The general strategy when using complex impedance is to find first the total impedance of the 
system in order to find the current.  Then one can find the voltage of any particular element by 
multiplying the current by impedance of that element. 
 
 
2.3 RC Circuit in the Frequency Domain 

In section 2.1 an RC circuit with only a discharging capacitor was examined.  Now the same circuit 
with alternating current (AC) will be examined.  Figure 8 shows a schematic for the circuit.  Notice that 
there are three sources of voltage in this picture.  Those are the signal generator, the capacitor and the 
resistor.  Using Kirchhoff’s Law we have: 
  

V
~

S+V
~

C+V
~

R = 0  (13) 
 

 

 
Figure 8  Basic RC circuit with signal generator as a voltage source 

 
The current is the same through each element because they are in series.  By replacing the voltage with 
the impedance multiplied by the current the equation becomes: 
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V
~

S− I
~
(Z R + Z C ) = 0  (14) 

 
Note there is a minus sign because the voltage drops over these two elements.  Now the total impedance 
of this circuit becomes especially important.  It is calculated below: 
  

ZR + ZC = R +
1

iωC

= R 1− i
1

ωRC
⎛
⎝⎜

⎞
⎠⎟

= R 1+
1

ωRC( )2
exp i arctan

−1
ωRC
⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

 (15) 

 
 

This expression looks awful, but let us separate the two components. R 1+
1

ωRC( )2
 is the ratio of the 

amplitude of voltage (V) to current (I) and the exponential contains the phase offset between V and I.  

Assuming that V
~

& I
~

 are of the form V0e
iω t  & I0e

i(ω t−φ )  and then using equation 14 we have: 
  

V0 = I0R 1+
1

ωRC( )2
 (16) 

 
Now the magnitude of the voltage over the capacitor is the product of the magnitude of the current and 
the magnitude of the impedance of the capacitor. 
 
  

VC = ZC I0

=
1
ωC

⎛
⎝⎜

⎞
⎠⎟

V0

R
ωRC( )2

ωRC( )2 +1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
V0

1+ ωRC( )2

=
V0

1+ ωτ( )2

 (17) 
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Question 1.3 
 
Based on the resistance and capacitance estimates given in step 1, what is an estimate for the decay 
time, RC? 

3 The Experiment 
 
3.1  Determining the Decay Time Constant in the Time Domain 
 

1. Record the measured values for the 500 Ω resistor and a 0.1 µF capacitor using the multimeter.   Make 
sure to record the appropriate uncertainty for each measurement. 

2. Connect the components in an RC circuit with the signal generator as shown in Figure 8, and then 
connect the oscilloscope across the capacitor. 

• When you connect both the signal generator and the oscilloscope to your circuit you must be 
strategic about the placement of the ground of them.  If you ground your circuit in two places 
then you have effectively eliminated the element in between them because there is no voltage 
difference between these elements.  The solution is to place both grounds on the same node in 
your circuit. 

3. Before making any measurements CALIBRATE THE OSCILLOSCOPE.  Refer back to Experiment 
0 for instructions or ask your TA if you have difficulty. 

4. Compute the theoretical time constant for the circuit (with uncertainty) from Equation 1 using 
measured component values for R and C and their respective uncertainties.  Make sure to include 
resistance from the signal generator (this extra resistance is 50 Ω with an uncertainty of 5%).  Always 
use total resistance ( Rtotal = RR + RSG ) in these calculations.  See Figure 9 below. 

 
Figure 9  Representation of signal generator with internal resistance 

 

5. Turn on the signal generator, and apply a square wave to the resistor and capacitor in series. 

6. The period of the square wave needs to be at least several times the fundamental decay time, τ , or the 
signal will appear as more like a triangle wave than Figure 10 or 11.  The signal needs to decay 
enough so that you can determine the “baseline”, from which you will measure the voltage.  This 
baseline will be your zero line.  The solution to question 1.4 will give you a good first guess as the 
frequency of the square wave. 
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Question 1.4 
 
What frequency should the square wave be if you desire to have the period be approximately ten 
times the decay time, RC?  (Use the RC you determined in the previous question.) 

 

                                      
                    Figure 10 Desired scope trace            Figure 11  Checking zero adjustment 

 

 

7. Measure the time constant for the discharge of an RC circuit using the simple two-point method 
described in section 2.1.   

8. Measure and record the voltage level as a function of time.  A straightforward way to do this is to 
adjust the controls such that a single exponential decay fills the screen, and simply record the levels as 
the trace crosses each of the 11 major vertical lines on the scope screen.  For example, a horizontal 
scale setting of 5 µs/division would provide points at 0, 5, 10, …, 55 µs.  Remember to include the 
uncertainties in the measurements.  See hints below to get the best view of the decay. 

9. Plot a graph of VC  versus t (including error bars) and then fit your data to the functional form of an 
exponential decay (i.e. VC = V0e

− t /τ ).  From the coefficients of the fit, determine a value (with 
uncertainty) for the time constant. 

 
Hints: 
For the measurement to be fit to an exponential it is best to arrange the horizontal sweep (time scale) such that 
a single exponential decay fills the screen.  Then set the left-right position of the trace such that you can 
measure the early portion of the decay where the voltage is largest.   

Changing the time scaling will not change the position of the baseline and will increase the amount of “good” 
points available to measure.  This will provide the most accurate measurements. 

Do not record values of zero.  Exponential decay will never theoretically become zero.  Fitting zero points will 
force the fit to decay faster than it actually does (artificially increasing the fitting result for τ ). 

 
 
 
 
 



 

Experiment 1:  RC Circuits    11 

3.2 Determining the Decay Time Constant in the Frequency Domain 
 In this section you will investigate how the RC circuit responds to alternating current at various 
frequencies.  
  

1. Use the same circuit as in Figure 8 for the following measurements.   
 
2. Select the sine wave output from the Signal Generator, and adjust the oscilloscope so as to 

display several cycles of the sinusoidal voltage across the capacitor.   
 
3. Perform a quick examination of the amplitude of VC as a function of the frequency to test that the 

behavior is as expected from equation 17.  That is, when you increase the frequency, does the 
voltage over the capacitor adjust as equation 17 dictates?  If it is not, ask the TA for assistance. 

 
4. Measure and record the peak-to-peak voltage VC  across the capacitor as a function of the 

frequency (a linear frequency range of 
1

16τ
 to 

16
τ

 should be sufficient).   

 
5. Plot a graph of the amplitude (or 1/2 of the peak-to-peak value) of VC  versus frequency 

(including error bars) using ORIGIN, and then fit your data to the functional form given by 
equation 17.  

 
6. From the coefficients of the fit, determine a value of RC (with uncertainty), and once again 

compare it to the theoretical value. 
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Analysis 
Compute the following: 
• Theoretical RC from direct measurement of components; 
• Experimental RC by 2 point method; 
• Comparison of experimental RC’s to theoretical RC (3 total). 

 
 
Conclusions 
 Highlight the themes of the lab and the physics the experiment verifies.  You should discuss the 
errors you encounter in the lab and how you could improve the lab if you had to repeat it.  If your results 
are unexpected or your t-values are high, you should identify possible explanations. 
 
 
Hints on reports 
• Write neatly—if your TA cannot read it, you could lose points. 
• Be organized—if your TA cannot find it, you could lose points. 
• Report your data, including plots—if your data is not in your report, your TA does know you did it. 
• Record uncertainty. 
• Propagate uncertainty.  
• Write your final answers with proper significant figures. 


