DEPARTMENT OF PHYSICS, UCSD PHYS 2CL - Electricity & Magnetism, Waves and Optics Lab Fall 2009

Instructor:	Leonid Butov
Office:	2117 Natural Sciences Building
Phone:	822-0362
E-Mail:	lvbutov@physics.ucsd.edu
Office Hours:	Mon. 2:00 PM – 3:00 PM or by appointment
Lectures:	Mon. 7:00 PM – 7:50 PM, York Hall 2722
Lab TA Coordinator:	Chris Palmer
Office:	2681 Mayer Hall Addition
Phone:	·
E-Mail:	chpalmer@physics.ucsd.edu
Office Hours:	Mon. 1:00 PM – 2:00 PM and Th. 1:00 PM – 2:00 PM
Web:	http://physics.ucsd.edu/students/courses/fall2009/managed/physics2cl/

TA:

FA09 PHYS 2CL

Mayer Hall Addition 2544

	Monday	Tuesday	Wednesday	Thursday	Friday
8:00 AM		A01	A05	A09	
		Conger	Conger	Conger	
9:30 AM		Kim	Graf	Winbow	
		662911	662915	662919	
11:00 AM		A02	A06	A10	A13
		Graf	Progovac	Conger	Progovac
12:30 PM		Kim	Marsh	Winbow	Marsh
		662912	662916	662920	662923
2:00 PM		A03	A07	A11	
		Marsh	Smith	Smith	
3:30 PM		Briggs	Huang	Progovac	
		662913	662917	662921	
5:00 PM		A04	A08	A12	
		Marsh	Smith	Smith	
6:30 PM		Briggs	Huang	Progovac	
		662914	662918	662922	

Lab TA Coordinators Name Chris Palmer

chpalmer@physics.ucsd.edu

Lab TAs		
Name		Email
Andrew	Briggs	abriggs@physics.ucsd.edu
Casey	Conger	caconder@physics.ucsd.edu
Miriam	Graf	mgraf@physics.ucsd.edu
Zhoushen	Huang	zhohuang@physics.ucsd.edu
Eric	Kim	erickim@ucsd.edu
Moses	Marsh	momarsh@physics.ucsd.edu
Stefan	Progovac	sprogovac@physics.ucsd.edu
Matthew	Smith	mss002@physics.ucsd.edu
Alex	Winbow	awinbow@physics.ucsd.edu

Email

week (starts)	lecture	ехр	report due at lab section	hw due at lab section
1 (28 Sep)	Measurements and Variability. Error propagation.	0		
2 (5 Oct)	Statistical Analysis.	1	0	3.10 & 3.28
3 (12 Oct)	RC circuits (Exp. 1). Histograms and Distributions. The Gaussian Distribution.	2	1	4.18 & 4.26
4 (19 Oct)	LRC circuits (Exp. 2, 3).	3	2	
5 (26 Oct)	Refraction and Interference with Microwaves (Exp. 4).	3		5.20 & 5.36
6 (2 Nov)	Measurements Magnetic Fields (Exp. 5).	4-7 (I)	3	
7 (9 Nov)	Lenses and the Human Eye (Exp. 7).	4-7 (II)	4-7 (I)	
8 (16 Nov)	Rejection of Data, Weighted Averages, and Least Squares Fitting.	4-7 (II)	4-7 (II)	7.2 & 8.10
9 (23 Nov)	Covariance and Correlation, χ^2 Test for a Distribution.			
10 (30 Nov)	final	make-up		9.14 & 12.3

Experiments:

- 0. Exploring the Instruments and ORIGIN
- 1. RC Circuits
- 2. Oscillation and Damping in the LRC Circuit
- 3. Resonance in LRC Circuits Driven by Alternating Current
- 4. Refraction and Interference with Microwaves
- 5. Measurements Magnetic Fields
- 6. Diffraction and Interference with Coherent Light
- 7. Lenses and the Human Eye

Students will do experiments 0, 1, 2, and 3 during weeks 1, 2, 3, 4 and 5. In week 5, students will enlist for the remaining two experiments choosing them among experiments 4, 5, 6 and 7. Students will do these two experiments during weeks 6, 7 and 8. Each experiment is performed by two students. The reports should be done individually by each student. Lab reports will be due at the lab session one week after the experiment is performed.

Laboratory Manual will be provided online.

Homework from Taylor, 2nd Edition

Probs 3.10 &	3.28 (optional: 3.36 & 3.41)	due at W2 lab section
Probs 4.18 &	4.26 (optional: 4.6 & 4.14)	due at W3 lab section
Probs 5.20 &	5.36 (optional: 5.2 & 5.6)	due at W5 lab section
Probs 7.2 & 8	.10 (optional: 6.4, 8.6 & 8.24)	due at W8 lab section
Probs 9.14 &	12.3 (optional: 12.14)	due at W10 lab section

Final Exam (Nov 30, 7 pm, York Hall 2722) will cover the material in the lectures and textbook.

<u>Textbook</u> (required): John R. Taylor, *An Introduction to Error Analysis*, 2nd Ed., 1997. <u>Lab notebooks</u> (required): Two 7 7/8 x 10 1/8 quadrille ruled notebooks. (You will work with one notebook while the other one is being reviewed by the TA). Calculator: A scientific calculator with a statistical analysis package (mean, standard deviation, and linear regression).

Grading Policy:	Lab Work	6x12=72%
	Homework	10x1=10%
	Exam	18%

Students should prepare for the experiment in advance by reading the lab manual. Students will be quizzed on the background by TAs in the early stage of the lab.

Quiz questions (can use notes, cannot use lab manual) Credit 2 points

Guide to the Lab Report

	Credit (10 points total)
Diagram(s) showing the overall experimental set-up	
and relevant electrical circuits	2
Key Equations	1
Data recording, analysis, and presentation in graphs	4
Error analysis, dominant sources of error	2
Experimental conclusions	1

How to ACE Your Lab Reports

- 1. All reports must include diagrams.
 - a. Make a clear diagram showing the overall experimental set-up.
 - b. Make clear diagrams of all relevant electrical circuits.
- 2. Record your data carefully.
 - a. Don't just write numbers. Say what the numbers represent, and include units (e.g. ohms) and the associated uncertainty (e.g. 5%).
- 3. Make your graphs understandable.
 - a. Give the graph a title.
 - b. Label your axes with the variable and units [e.g. t (msec) or d (10⁻⁸ cm)].
 - c. Put error bars on the experimental points.
 - d. If you are fitting (comparing) experimental points to some mathematical expression (the fitting function), then include the fitting function on the graph. Include also any fitting parameters with their uncertainties (errors).
- 4. When you use measured values to calculate a result, e.g. q = x/y, use the errors (uncertainties) associated with x and y to find the uncertainty in the calculated value q.