Covariance

 $\overline{g} = \frac{1}{N} \sum_{i=1}^{N} g_i$ find δq if δx and δy are not independent $= \frac{1}{N} \sum_{i=1}^{N} \left[g(\bar{x}, \bar{y}) + \frac{\partial g}{\partial x} (x_i - \bar{x}) + \frac{\partial g}{\partial y} (y_i - \bar{y}) \right]$ N pairs of data (X, , Y),..., (XN, YN) $X_1, \dots, X_N \longrightarrow \overline{X} and \overline{D}_X$ $Z(x_i - \bar{x}) = 0 \implies \bar{g} = g(\bar{x}, \bar{g})$ y, ..., yN -> y and by $\begin{array}{c} g_{i} = g(x_{i}, y_{i}) \\ g_{i}, \dots, g_{N} \longrightarrow \overline{g} \quad \text{and} \quad \overline{\varsigma}g \\ g_{i} \approx g(\overline{x}, \overline{y}) + \frac{\partial g}{\partial x}(x_{i} - \overline{x}) + \frac{\partial g}{\partial y}(y_{i} - \overline{y}) \end{array}$ $\overline{\sigma}_{g}^{2} = \frac{1}{N} \sum (g_{i} - \overline{g})^{2}$ $= \frac{1}{N} \sum \left[\frac{\partial g}{\partial x} (x_i - \overline{x}) + \frac{\partial g}{\partial y} (y_i - \overline{y}) \right]^2$ $= \left(\frac{\partial g}{\partial x}\right)^{2} \frac{1}{N} \sum (x_{i} - \overline{x})^{2} + \left(\frac{\partial g}{\partial y}\right)^{2} \frac{1}{N} \sum (y_{i} - \overline{y})^{2}$ + 2 $\frac{\partial g}{\partial x} \frac{\partial g}{\partial y} \frac{1}{N} \sum (x_i - \overline{x}) (y_i - \overline{y})$ σ_a for arbitrary σ_x and σ_y $\mathfrak{G}_{g}^{2} = \left(\frac{\partial g}{\partial x}\right)^{2} \mathfrak{G}_{x}^{2} + \left(\frac{\partial g}{\partial y}\right)^{2} \mathfrak{G}_{y}^{2} + 2 \frac{\partial g}{\partial x} \frac{\partial g}{\partial y} \mathfrak{G}_{xy}$ σ_x and σ_y can be correlated — $\mathfrak{S}_{\mathbf{x}\mathbf{y}} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i - \overline{\mathbf{x}}) \cdot (\mathbf{y}_i - \overline{\mathbf{y}})$ <u>covariance</u> σ_{xv} when σ_x and σ_y are independent $\sigma_{xy} = 0 \longrightarrow \sigma_y^2 = \left(\frac{\partial y}{\partial x}\right)^2 \sigma_x^2 + \left(\frac{\partial y}{\partial u}\right)^2 \sigma_y^2$

Coefficient of Linear Correlation

N pairs of values $(x_i, y_i), ..., (x_N, y_N)$ $y = A + B \times \longrightarrow \text{do } N \text{ pairs of } (x_i, y_i) \text{ satisfy a linear relation } ?$

$$\Gamma = \frac{\overline{\sigma}_{xy}}{\overline{\sigma}_{x} \cdot \overline{\sigma}_{y}}$$

$$\Gamma = \frac{\Sigma (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sqrt{\Sigma (x_{i} - \overline{x})^{2} \Sigma (y_{i} - \overline{y})^{2}}}$$

linear correlation coefficient or correlation coefficient

-1 ≤ r ≤ 1

Suppose
$$(X_i, y_i)$$
 all lie exactly
on the line $y = A + Bx$
 $y_i = A + B\overline{x}$
 $\overline{y} = A + B\overline{x}$
 $y_1 - \overline{y} = B(x_i - \overline{x})$
 $\Gamma = \frac{B\overline{Z}(x_i - \overline{x})^2}{\sqrt{\overline{Z}(x_i - \overline{x})^2} \cdot B^2 \overline{Z}(x_i - \overline{x})^2} = \frac{B}{|B|} = \pm 1$

Suppose, there is no relationship between x and y $\Sigma(x_i - \overline{x})(y_i - \overline{y}) \rightarrow 0$

 $\mathbf{r}=0$

if *r* is close to ± 1 when *x* and *y* are linearly correlated if *r* is close to 0 when there is no relationship between *x* and *y x* and *y* are uncorrelated

Quantitative Significance of r

Student i	1	2	3	4	5	6	7	8	9	10
Homework x_i	90	60	45	100	15	23	52	30	71	88
Exam y_i	90	71	65	100	45	60	75	85	100	80

probability that N measurements of two uncorrelated variables x and y would produce $r \ge r_0$ — Table C

Table 9.4. The probability $Prob_N(|r| \ge r_0)$ that N measurements of two uncorrelated variables x and y would produce a correlation coefficient with $|r| \ge r_0$. Values given are percentage probabilities, and blanks indicate values less than 0.05%.

						ro					
N	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
3	100	94	87	81	74	67	59	51	41	29	0
6	100	85	70	56	43	31	21	12	6	1	0
10	100	78	58	40	25	14	7	2	0.5		0
20	100	67	40	20	8	2	0.5	0.1	\smile		0
50	100	49	16	3	0.4						0

correlation is "significant" if $Prob_N(|r| \ge r_0)$ is less than 5 % correlation is "highly significant" if $Prob_N(|r| \ge r_0)$ is less than 1 %

calculate correlation coefficient $\Gamma = \frac{\Sigma(x_i - \overline{x})(\overline{y}_i - \overline{y})}{\sqrt{\Sigma(x_i - \overline{x})^2 Z(\overline{y}_i - \overline{y})}}$ r = 0.8N = 10Prob, (Irizro) Prob10 (1r1≥0.8) = 0.5 %it is very unlikely that x and y are uncorrelated it is very likely that x and y are correlated

the correlation is highly significant

Example:

Calculate the covariance and the correlation coefficient r for the following six pairs of measurements of two sides x and y of a rectangle. Would you say these data show a significant linear correlation coefficient? Highly significant?

A B C D E F

$$x = 71 72 73 75 76 77 \text{ mm}$$
 y
 $y = 95 96 96 98 98 99 \text{ mm}$ $\overline{x} = 74$ $\overline{y} = 97$
covariance $\sigma_{xy} = \frac{1}{N} \sum (x_i - \overline{x})(y_i - \overline{y}) = \frac{1}{6} ((-3) \times (-2) + ... + 3 \times 2) = 3$
correlation coefficient $r = \frac{\sigma_{xy}}{\sigma_x \sigma_y} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}} = \frac{0.98}{-0.98}$
Table C Prob $(|r| \ge 0.98) \approx 0.2\%$ therefore the correlation is both

Table C $Prob_6(|r| \ge 0.98) \approx 0.2\%$

therefore, the correlation is both significant and highly significant

						r _o					
N	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
3	100	94	87	81	74	67	59	51	41	29	0
6	100	85	70	56	43	31	21	12	6	1	X 0
10	100	78	58	40	25	14	7	2	0.5		0
20	100	67	40	20	8	2	0.5	0.1			0
50	100	49	16	3	0.4						0

The square-root rule for a counting experiment

for events which occur at random but with a definite average rate N occurrences in a time T the standard deviation is \sqrt{N}

(number of counts in time
$$T$$
) = $N \pm \sqrt{N}$
average number of counts in a time T uncertainty

(fractional uncertainty) =
$$\frac{\sqrt{N}}{N} = \frac{1}{\sqrt{N}}$$
 reduces with increasing N

Examples

Photoemission:

if average emission rate is 10⁶ photons/s, uncertainty is $\sqrt{10^6} = 10^3$ photons/s and expected number is $10^6 \pm 10^3$ photons/s

Rain droplets on a windshield: if average rate is 100 droplets/s, uncertainty is $\sqrt{100} = 10$ droplets/s and expected number is 100 ± 10 droplets/s fractional uncertainty $\frac{1}{\sqrt{N}} = \frac{1}{1000}$ $\frac{1}{\sqrt{N}} = \frac{1}{10}$

Chi Squared Test for a Distribution

	40 measured values of x (in cm)									are these measurements
731 739 678 698	772 780 748 770	771 709 689 754	681 676 810 830	722 760 805 725	688 748 778 710	653 672 764 738	757 687 753 638	733 766 709 787	742 645 675 712	governed by a Gauss distribution ? $\overline{X} = \frac{\overline{\Sigma} x_i}{N} = 730.1 \text{ cm}$ $\overline{\sigma} = \sqrt{\frac{\overline{\Sigma} (\overline{X_i} - \overline{X})^2}{N - 1}} = 46.8 \text{ cm}$
$G_{X,\sigma}$	$f(x) = -\frac{1}{6}$	1	$e^{-(x-X)}$	34 9 Pm X-σ	X	b_3 $X+\sigma$	•	4	χ² =	$\frac{E_{\kappa}}{E_{\kappa}} = \frac{\text{deviation}}{\text{expected size of fluctuation}} \sim 1?$ $= \sum_{k=1}^{n} \frac{(\mathcal{O}_{\kappa} - E_{\kappa})^{2}}{E_{\kappa}} \text{chi squared}$
Bin nu k 1 2 3 4	:	Obso	$\frac{O_k}{0}$ 8 10 16 6	nber	$\tilde{E_k} =$	ed numb NProb 6.4 13.6 13.6 6.4		$\frac{Difference}{O_k - E}$ $\frac{1.6}{-3.6}$ 2.4 -0.4	x ^k χ ²	 <i>i</i> ⇒ <i>n</i> observed and expected distributions agree about as well as expected <i>i</i> ⇒ <i>n</i> significant disagreement between observed and expected distributions
E_k^{κ}	- exp	pecte	d nur	mber nber s of <i>l</i>		= _	$\frac{(0e^{-1})^2}{(1.6)^2} + 80 < 80 < 80$	<u>(-3.6)</u> 13.6	$\frac{2}{2} + \frac{(2.4)}{13.6}$	$(\frac{4}{6})^2 + \frac{(-\alpha 4)^2}{6.4}$ no reason to doubt that the measurements were governed by a Gauss distribution

Degrees of Freedom and Reduced Chi Squared

a better procedure is to compare χ^2 not with the number of bins *n* but instead with the number of degree of freedom *d*

- n is the number of bins
- c is the number of parameters that had to be calculated from the data to compute the expected numbers E_k
- *c* is called <u>the number of constrains</u>

$$d = n - c$$

d is <u>the number of degrees of freedom</u>

test for a Gauss
$$\rightarrow C = 3 \stackrel{N}{\leftarrow} X$$

distribution $G_{X, \mathfrak{S}}(X) \rightarrow C = 3 \stackrel{N}{\leftarrow} X$

(expected average value of
$$\chi^2$$
) = $d = n-c$
 $\tilde{\chi}^2 = \chi^2/d$ reduced chi squared
(expected average value of $\tilde{\chi}^2$) = 1

Probabilities of Chi Squared

quantitative measure of agreement between observed data and their expected distribution (expected average value of χ^2) = d = n-c $\widetilde{\chi}^2 = \chi^2/d$ (expected average value of $\widetilde{\chi}^2$) = 1 $\chi^2 = 1.80$ d=4-3=1 $\tilde{\chi}^2 = 1.80$ Prob $(\widehat{\chi}^2 \ge 1.80) \approx 18\%$ - Table D $\tilde{\chi}_{o}^{2}$ probability of obtaining
 4
 5
 6

 5
 3
 1

 2
 0.7
 0.2
 0.25 0.5 0.75 1.0 1.25 1.5 1.75 d a value of $\tilde{\chi}^2$ greater or 19 X 16 8 equal to $\tilde{\chi}_0^2$, assuming 2 0.7 11 3 0.7 0.2 _ the measurements are 8 1 0.1 _ _ governed by the expected 0.1 distribution

disagreement is "significant" if $Prob_N(\tilde{\chi}^2 \ge \tilde{\chi}_0^2)$ is less than 5 % disagreement is "highly significant" if $Prob_N(\tilde{\chi}^2 \ge \tilde{\chi}_0^2)$ is less than 1 %

reject the expected distribution