Covariance
find δq if δx and δy are not independent $\quad \bar{q}=\frac{1}{N} \sum_{i=1}^{N} q_{i}$
N pairs of data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)$ $x_{1}, \ldots, x_{N} \rightarrow \bar{x}$ and σ_{x}
$y_{1}, \ldots, y_{N} \rightarrow \bar{y}$ and σ_{y}

$$
=\frac{1}{N} \sum_{i=1}^{N}\left[q(\bar{x}, \bar{y})+\frac{\partial g}{\partial x}\left(x_{i}-\bar{x}\right)+\frac{\partial g}{\partial y}\left(y_{i}-\bar{y}\right)\right]
$$

$$
\Sigma\left(x_{i}-\bar{x}\right)=0 \Rightarrow \quad \bar{q}=q(\bar{x}, \bar{y})
$$

$$
\left(\begin{array}{l}
q_{i}=q\left(x_{i}, y_{i}\right) \\
q_{1}, \ldots, q_{N} \rightarrow \bar{q} \text { and } \sigma_{g} \\
q_{i} \approx q(\bar{x}, \bar{y})+\frac{\partial q}{\partial x}\left(x_{i}-\bar{x}\right)+\frac{\partial g}{\partial y}\left(y_{i}-\bar{y}\right)
\end{array}\right.
$$

σ_{q} for arbitrary σ_{x} and σ_{y}
\qquad

$$
\underline{\text { covariance }} \sigma_{x y} \longrightarrow
$$

$$
\begin{aligned}
& \sigma_{q}^{2}= \frac{1}{N} \sum\left(q_{i}-\bar{g}\right)^{2} \\
&= \frac{1}{N} \sum\left[\frac{\partial q}{\partial x}\left(x_{i}-\bar{x}\right)+\frac{\partial q}{\partial y}\left(y_{i}-\bar{y}\right)\right]^{2} \\
&=\left(\frac{\partial g}{\partial x}\right)^{2} \frac{1}{N} \sum\left(x_{i}-\bar{x}\right)^{2}+\left(\frac{\partial g}{\partial y}\right)^{2} \frac{1}{N} \sum\left(y_{i}-\bar{y}\right)^{2} \\
&+2 \frac{\partial g}{\partial x} \frac{\partial g}{\partial y} \frac{1}{N} \sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \\
& \sigma_{q}^{2}=\left(\frac{\partial g}{\partial x}\right)^{2} \sigma_{x}^{2}+\left(\frac{\partial g}{\partial y}\right)^{2} \sigma_{y}^{2}+2 \frac{\partial g}{\partial x} \cdot \frac{\partial g}{\partial y} \sigma_{x y} \\
& \sigma_{x y}= \frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right) \cdot\left(y_{i}-\bar{y}\right)
\end{aligned}
$$

when σ_{x} and σ_{y} are independent $\sigma_{x y}=0 \longrightarrow \sigma_{q}^{2}=\left(\frac{\partial g}{\partial x}\right)^{2} \sigma_{x}^{2}+\left(\frac{\partial z}{\partial y}\right)^{2} \sigma_{y}^{2}$

Coefficient of Linear Correlation

N pairs of values $\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)$

$$
y=A+B x \quad \text { do } N \text { pairs of }\left(x_{i}, y_{i}\right) \text { satisfy a linear relation? }
$$

$$
\begin{array}{|ll}
r=\frac{\sigma_{x y}}{\sigma_{x} \sigma_{y}} \\
r=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2} \Sigma\left(y_{i}-\bar{y}\right)^{2}}} \\
-1 \leqslant r \leqslant 1
\end{array} \quad \begin{aligned}
& \text { or correlation coefficient }
\end{aligned} \quad \begin{aligned}
& \text { linear correlation coefficient }
\end{aligned}
$$

suppose $\left(x_{i}, y_{i}\right)$ all lie exactly
on the line $y=A+B x$
$y_{i}=A+B x_{i}$
$\bar{y}=A+B \bar{x}$
$y_{1}-\bar{y}=B\left(x_{i}-\bar{x}\right)$
$r=\frac{B \sum\left(x_{i}-\bar{x}\right)^{2}}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2} \cdot B^{2} \sum\left(x_{i}-\bar{x}\right)^{2}}}=\frac{B}{|B|}= \pm 1$
suppose, there is no relationship between x and y
$\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \rightarrow 0$
if r is close to ± 1
when x and y are linearly correlated
if r is close to 0
when there is no relationship between x and y x and y are uncorrelated
$r=0$

Quantitative Significance of r

Student i	1	2	3	4	5	6	7	8	9	10
Homework x_{i}	90	60	45	100	15	23	52	30	71	88
Exam y_{i}	90	71	65	100	45	60	75	85	100	80

calculate correlation coefficient
$r=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2} \sum\left(y_{i}-\bar{y}\right)^{2}}}$
probability that N measurements of two uncorrelated variables x and y would produce $r \geq r_{0} \longrightarrow$ Table C

Table 9.4. The probability $\operatorname{Prob}_{N}\left(|r| \geqslant r_{\mathrm{o}}\right)$ that N measurements of two uncorrelated variables x and y would produce a correlation coefficient with $|r| \geqslant r_{\mathrm{o}}$. Values given are percentage probabilities, and blanks indicate values less than 0.05%.

correlation is "significant" if $\operatorname{Prob}_{N}\left(|r| \geq r_{0}\right)$ is less than 5%
correlation is "highly significant" if $\operatorname{Prob}_{N}\left(|r| \geq r_{0}\right)$ is less than 1%
it is very likely that x and y are correlated the correlation is highly significant

Example:

Calculate the covariance and the correlation coefficient r for the following six pairs of measurements of two sides x and y of a rectangle. Would you say these data show a significant linear correlation coefficient? Highly significant?

A	B	C	D	E	F	
$x=71$	72	73	75	76	77	mm
$y=95$	96	96	98	98	99	mm

$$
\bar{x}=74 \quad \bar{y}=97
$$

covariance $\quad \sigma_{x y}=\frac{1}{N} \sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\frac{1}{6}((-3) \times(-2)+\ldots+3 \times 2)=\underline{3}$
correlation coefficient $\quad r=\frac{\sigma_{x y}}{\sigma_{x} \sigma_{y}}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2} \sum\left(y_{i}-\bar{y}\right)^{2}}}=\underline{0.98}$
Table C $\operatorname{Prob}_{6}(|r| \geq 0.98) \approx 0.2 \%$ therefore, the correlation is both significant and highly significant

				r_{o}							
N	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
3	100	94	87	81	74	67	59	51	41	29	0
6	100	85	70	56	43	31	21	12	6	1	$\times 0$
10	100	78	58	40	25	14	7	2	0.5		0
20	100	67	40	20	8	2	0.5	0.1			0
50	100	49	16	3	0.4						0

The square-root rule for a counting experiment

for events which occur at random
but with a definite average rate N occurrences in a time T the standard deviation is \sqrt{N}

(fractional uncertainty) $=\frac{\sqrt{N}}{N}=\frac{1}{\sqrt{N}}$ reduces with increasing N

Examples

Photoemission:
if average emission rate is 10^{6} photons $/ \mathrm{s}$, uncertainty is $\sqrt{10^{6}}=10^{3}$ photons $/ \mathrm{s}$ and expected number is $10^{6} \pm 10^{3}$ photons/s
fractional uncertainty $\frac{1}{\sqrt{N}}=\frac{1}{1000}$

Rain droplets on a windshield:
if average rate is 100 droplets/s, uncertainty is $\sqrt{100}=10$ droplets/s and expected number is 100 ± 10 droplets/s

$$
\frac{1}{\sqrt{N}}=\frac{1}{10}
$$

Chi Squared Test for a Distribution

40 measured values of x (in cm)

731	772	771	681	722	688	653	757	733	742
739	780	709	676	760	748	672	687	766	645
678	748	689	810	805	778	764	753	709	675
698	770	754	830	725	710	738	638	787	712

are these measurements governed by a Gauss distribution?
$\bar{x}=\frac{\sum x_{i}}{N}=730.1 \mathrm{~cm}$
$\sigma=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{N-1}}=46.8 \mathrm{~cm}$
$G_{X, \sigma}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-X)^{2} / 2 \sigma^{2}}$

O_{k} - observed number $\quad x^{2}=\sum_{k=1}^{4} \frac{\left(o_{k}-E_{k}\right)^{2}}{E_{k}}$
E_{k} - expected number $\quad=\frac{(1.6)^{2}}{6.4}+\frac{(-3.6)^{2}}{13.6}+\frac{(2.4)^{2}}{13.6}+\frac{(-0.4)^{2}}{6.4}$
$\sqrt{E_{k}}$ - fluctuations of E_{k}

$$
=1.80<n \longrightarrow \text { by a Gauss distribution }
$$

Degrees of Freedom and Reduced Chi Squared
a better procedure is to compare χ^{2} not with the number of bins n but instead with the number of degree of freedom d
n is the number of bins
c is the number of parameters that had to be calculated from the data to compute the expected numbers E_{k}

$$
d=n-c
$$

c is called the number of constrains
d is the number of degrees of freedom

$$
\begin{aligned}
& \text { test for a Gauss } \\
& \text { distribution } G_{X, \sigma}(x)
\end{aligned} \rightarrow c=3{\underset{K}{K}}_{\stackrel{\alpha}{K}}^{N}
$$

(expected average value of $\left.x^{2}\right)=d=n-c$
$\widetilde{x}^{2}=x^{2} / d \quad$ reduced chi squared
(expected average value of $\left.\widetilde{x}^{2}\right)=1$

Probabilities of Chi Squared

quantitative measure of agreement between observed data and their expected distribution (expected average value of x^{2}) $=d=n-c$

$$
\begin{aligned}
& \tilde{x}^{2}=x^{2} / d \\
& \text { (expected average value of } \left.\tilde{x}^{2}\right)=1 \\
& x^{2}=1.80 \\
& d=4-3=1 \\
& \tilde{x}^{2}=1.80 \\
& \operatorname{Prob}\left(\widetilde{x}^{2} \geqslant 1.80\right) \approx 18 \%
\end{aligned}
$$

d	$\widetilde{\chi}_{0}{ }^{2}$												
	0	0.25	0.5	0.75	1.0	1.25	1.5	1.75	2	3	4	5	6
1	100	62	48	39	32	26	22	19 X	16	8	5	3	1
2	100	78	61	47	37	29	22	17	14	5	2	0.7	0.2
3	100	86	68	52	39	29	21	15	11	3	0.7	0.2	-
5	100	94	78	59	42	28	19	12	8	1	0.1	-	-
10	100	99	89	68	44	25	13	6	3	0.1	-	-	-
15	100	100	94	73	45	23	10	4	1	-	-	-	-

probability of obtaining a value of $\tilde{\chi}^{2}$ greater or equal to $\widetilde{\chi}_{0}^{2}$, assuming the measurements are governed by the expected distribution
disagreement is "significant" if $\operatorname{Prob}_{N}\left(\tilde{\chi}^{2} \geq \widetilde{\chi}_{0}^{2}\right)$ is less than 5% disagreement is "highly significant" if $\operatorname{Prob}_{N}\left(\widetilde{\chi}^{2} \geq \widetilde{\chi}_{0}^{2}\right)$ is less than 1%
reject the expected distribution

