Rejection of Data

$3.8,3.5,3.9,3.9,3.4,1.8$ suspect $\quad \bar{x}=\frac{1}{N} \sum x_{i} \quad \sigma_{x}=\sqrt{\frac{1}{N-1} \sum\left(x_{i}-\bar{x}\right)^{2}}$
$\bar{x}=3.4 \mathrm{~s}$
$\sigma=0.8 \mathrm{~s}$
$\bar{x}-x_{\text {sus }}=3.4-1.8=1.6=2 \sigma$
$\operatorname{Prob}($ outside $2 \sigma)=1-\operatorname{Prob}($ within $2 \sigma)=$

$$
=1-0.95=0.05
$$

$n=(\operatorname{expected}$ number as deviant as 1.8$)=$
$=N \times \operatorname{Prob}($ outside $2 \sigma)=$
$=6 \times 0.05=0.3$

$\operatorname{erf}(t)-$ error function
if $n<0.5$ the measurement is "improbable" and can be rejected according to Chauvenet's criterion
x_{1}, \ldots, x_{N}
$t_{\text {sus }}=\frac{\left|x_{\text {sus }}-\bar{x}\right|}{\sigma}$
$n=N \times \operatorname{Prob}\left(\right.$ outside $\left.t_{\text {sus }} \sigma\right)$
if $n<\frac{1}{2}$, then $x_{\text {sus }}$ can be rejected
Chauvenet's criterion

Example Problem

A student makes 5 measurements of the period of a pendulum and gets
$T=2.8,2.5,2.7,2.7,2.3 \mathrm{~s}$.
Should any of these measurements be dropped?
Calculate the average
$\bar{T}=\frac{2.8+2.5+2.7+2.7+2.3}{5}=2.6 \mathrm{~s}$

$$
\longleftarrow \quad \bar{x}=\frac{1}{N} \sum x_{i}
$$

Calculate the standard deviation
$\sigma=\sqrt{\frac{1}{4}\left(0.2^{2}+0.1^{2}+0.1^{2}+0.1^{2}+0.3^{2}\right)}=0.2 \mathrm{~s} \quad \longleftarrow \quad \sigma_{x}=\sqrt{\frac{1}{N-1} \sum\left(x_{i}-\bar{x}\right)^{2}}$
The measurement furthest from the mean is 2.3 s giving $t_{\text {sus }}=0.3 / 0.2=1.5$

$$
\longleftarrow t_{\text {sus }}=\frac{\left|X_{\text {sus }}-\bar{x}\right|}{\sigma}
$$

Look up the probability to be further off, $P=13.36 \% \longleftarrow$ Table A

Multiply by the number of trials to get the expected number of events that far off, $n=5 \times 0.1336 \approx 0.67$
$0.67 \geq 0.5 \rightarrow$ Do not drop this measurement (or any other)

Weighted Averages

A: $x=x_{A} \pm \sigma_{A}$
$B: \quad x=x_{B} \pm \sigma_{B}$$\quad$ combining separate measurements: what is the best estimate for x ?
$\operatorname{Prob}_{X}\left(x_{A}\right) \propto \frac{1}{\sigma_{A}} e^{-\left(x_{A}-X\right)^{2} / 2 \sigma_{A}^{2}} \quad \begin{aligned} & \text { assume that measurements are governed by Gauss } \\ & \operatorname{Prob}_{X}\left(x_{B}\right) \propto \frac{1}{\sigma_{B}} e^{-\left(x_{B}-X\right)^{2} / 2 \sigma_{B}^{2}}\end{aligned} \quad$ probability that A finds x_{A}
$\operatorname{Prob}_{X}\left(x_{A} x_{B}\right)=\operatorname{Prob}_{X}\left(x_{A}\right) \cdot \operatorname{Prob}_{X}\left(x_{B}\right) \longleftarrow$ probability that A finds x_{A} and B finds x_{B}

$$
\propto \frac{1}{\sigma_{A} \sigma_{B}} e^{-x^{2} / 2} \quad \longleftarrow \quad \text { find maximum of probability }
$$

$\chi^{2}=\left(\frac{x_{A}-X}{\sigma_{A}}\right)^{2}+\left(\frac{x_{B}-X}{\sigma_{B}}\right)^{2} \quad$ the best estimate for X is that value for which $\operatorname{Prob}_{X}\left(x_{A}, x_{B}\right)$ is maximum
$\frac{d \chi^{2}}{d X}=0 \Rightarrow-2 \frac{x_{A}-X}{\sigma_{A}{ }^{2}}-2 \frac{x_{B}-X}{\sigma_{B}{ }^{2}}=0 \quad$ chi squared - "sum of squares"
(best estimate for $X)=\left(\frac{x_{A}}{\sigma_{A}^{2}}+\frac{x_{B}}{\sigma_{B}^{2}}\right) /\left(\frac{1}{\sigma_{A}^{2}}+\frac{1}{\sigma_{B}^{2}}\right) \quad \begin{aligned} & \text { find minimum of } \chi^{2} \\ & \text { method of least squares }\end{aligned}$

$$
=\frac{w_{A} x_{A}+w_{B} x_{B}}{w_{A}+w_{B}}=x_{\text {wav }} \quad \longleftarrow \text { weighted average }
$$

$w_{A}=\frac{1}{\sigma_{A}^{2}} \quad w_{B}=\frac{1}{\sigma_{B}^{2}}$
weights

Weighted Averages

$x_{1}, x_{2}, \ldots, x_{N}$ - measurements of a single quantity x with uncertainties $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{N}$

$$
\begin{aligned}
& x_{1} \pm \sigma_{1}, x_{2} \pm \sigma_{2}, \ldots, x_{N} \pm \sigma_{N} \\
& x_{\text {wav }}=\frac{\sum w_{i} x_{i}}{\sum w_{i}} \\
& w_{i}=\frac{1}{\sigma_{i}^{2}} \\
& \sigma_{\text {wav }}=\frac{1}{\sqrt{\sum w_{i}}}
\end{aligned} \quad \begin{aligned}
& \text { weighted average }
\end{aligned}
$$

Example of Weighted Average

$$
\begin{array}{ll}
R_{1}=11 \pm 1 \quad(\Omega) \quad \text { three measurements of } \\
R_{2}=12 \pm 1 & \text { what is the best estima } \\
R_{3}=10 \pm 3 \\
\sigma_{1}=1 \quad w_{1}=1 \\
\sigma_{2}=1 \quad w_{2}=1 \\
\sigma_{3}=3 \quad w_{3}=\frac{1}{9} \\
R_{w A V}=\frac{\sum w_{1} R_{i}}{\sum w_{1}}=\frac{(1 \times 11)+(1 \times 12)+\left(\frac{1}{9} \times 10\right)}{1+1+\frac{1}{9}}=11.42 \Omega \\
\sigma_{w A V}=\frac{1}{\sqrt{\sum w_{i}}}=\frac{1}{\sqrt{1+1+\frac{1}{9}}}=0.69 \\
R=11.4 \pm 0.7 \Omega
\end{array}
$$

three measurements of a resistance what is the best estimate for R ?

Least-Squares Fitting

consider two variables x and y that are connected by a linear relation

$$
y=A+B x
$$

graphical method of finding the best straight line to fit a series of experimental points

$$
\begin{aligned}
& x_{1}, x_{2}, \ldots, x_{N} \\
& y_{1}, y_{2}, \ldots, y_{N}
\end{aligned} \longrightarrow \text { find } A \text { and } B
$$

analytical method of finding the best straight line to fit a series of experimental points is called linear regression or the least-squares fit for a line

Calculation of the Constants A and B

(true value for y_{i}) $=A+B x_{i}$
$\operatorname{Prob}_{A, B}\left(y_{1}\right) \propto \frac{1}{\sigma_{y}} e^{-\left(y_{1}-A-B x_{1}\right)^{2} / 2 \sigma_{y}^{2}} \longleftarrow$ probability of obtaining the observed value of y_{1}
$\operatorname{Prob}_{A, B}\left(y_{1}, \ldots, y_{N}\right)=\operatorname{Prob}_{A, B}\left(y_{1}\right) \cdots \operatorname{Prob}_{A, B}\left(y_{N}\right) \longleftarrow$ probability of obtaining the set y_{1}, \ldots, y_{N} $\propto \frac{1}{\sigma_{y}^{N}} e^{-x^{2} / 2} \longleftarrow$ find maximum of probability
$\chi^{2}=\sum_{i=1}^{N} \frac{\left(y_{i}-A-B x_{i}\right)^{2}}{\sigma_{y}^{2}} \longleftarrow \begin{aligned} & \text { chi squared }- \text { "sum of squares" } \\ & \text { find minimum of } \chi^{2} \\ & \text { least squares fitting }\end{aligned}$

$$
\left\lvert\, \begin{aligned}
& \frac{\partial \chi^{2}}{\partial A}=\frac{-2}{\sigma_{y}^{2}} \sum_{i=1}^{N}\left(y_{i}-A-B x_{i}\right)=0 \\
& \frac{\partial \chi^{2}}{\partial B}=\frac{-2}{\sigma_{y}^{2}} \sum_{i=1}^{N} x_{i}\left(y_{i}-A-B x_{i}\right)=0
\end{aligned}\right.
$$

$$
\left\lvert\, \begin{aligned}
& \sum y_{i}-A N-B \sum x_{i}=0 \\
& \sum x_{i} y_{i}-A \sum x_{i}-B \sum x_{i}^{2}=0
\end{aligned}\right.
$$

$$
\begin{aligned}
& A=\frac{\sum x^{2} \sum y-\sum x \sum x y}{\Delta} \\
& B=\frac{N \sum x y-\sum x \sum y}{\Delta} \\
& \Delta=N \sum x^{2}-\left(\sum x\right)^{2}
\end{aligned}
$$

Uncertainties in y, A, and B

$$
\begin{aligned}
& A=\frac{\sum x^{2} \sum y-\sum x \sum x y}{\Delta} \\
& B=\frac{N \sum x y-\sum x \sum y}{\Delta} \\
& \Delta=N \sum x^{2}-\left(\sum x\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{y}=\sqrt{\frac{1}{N-2} \sum_{i=1}^{N}\left(y_{i}-A-B x_{i}\right)^{2}} \\
& \sigma_{A}=\sigma_{y} \sqrt{\frac{\sum x^{2}}{\Delta}} \\
& \sigma_{B}=\sigma_{y} \sqrt{\frac{N}{\Delta}}
\end{aligned}
$$

uncertainty in the measurement of y
uncertainties in the constants A and B
given by error propagation in terms
of uncertainties in y_{1}, \ldots, y_{N}

Example of Calculation of the Constants A and B

Example Problem

Two students measure the radius of a planet and get final answers $R_{A}=25,000 \pm 3,000 \mathrm{~km}$ and $R_{B}=19,000 \pm 2,500 \mathrm{~km}$.
(a) Assuming all errors are independent and random, what is the discrepancy and what is its uncertainty?
(b) Assuming all quantities are normally distributed as expected, what would be the probability that the two measurements would disagree by more than this?
Do you consider the discrepancy in the measurements significant (at the 5% level)?
(a) $R_{A}-R_{B}=25,000-19,000=\underline{6,000 k m}$

$$
\sigma_{R_{A}-R_{B}}=\sqrt{\sigma_{R_{A}}^{2}+\sigma_{R_{B}}^{2}}=\sqrt{3,000^{2}+2,500^{2}}=3,905 \mathrm{~km} \rightarrow 4,000 \mathrm{~km}
$$

$$
R_{A}-R_{B}=6,000 \pm 4,000 \mathrm{~km}
$$

(b) $t=\frac{6,000}{4,000}=1.5$

Table A: Probability to be within 1.5σ is $86.64 \% \approx 87 \%$. Therefore, the probability that the two measurements would disagree by more than this is $100-87=13 \%$.
The discrepancy in the measurements is not significant (at the 5% level).

Example Problem

Two students measure the radius of a planet and get final answers $R_{A}=25,000 \pm 3,000 \mathrm{~km}$ and $R_{B}=19,000 \pm 2,500 \mathrm{~km}$.
The best estimate of the true radius of a planet is the weighted average. Find the best estimate of the true radius of a planet and the error in that estimate.

$$
\begin{gathered}
x_{\text {wav }}=\frac{w_{A} x_{A}+w_{B} x_{B}}{w_{A}+w_{B}} \quad w_{A}=\frac{1}{\sigma_{A}^{2}} \quad w_{B}=\frac{1}{\sigma_{B}^{2}} \quad \sigma_{w a v}=\frac{1}{\sqrt{w_{A}+w_{B}}} \\
R_{\text {wav }}=\frac{\frac{R_{A}}{\sigma_{A}^{2}}+\frac{R_{B}}{\sigma_{B}^{2}}}{\frac{1}{\sigma_{A}^{2}}+\frac{1}{\sigma_{B}^{2}}}=\frac{\frac{25,000}{3,000^{2}}+\frac{19,000}{2,500^{2}}}{\frac{1}{3,000^{2}}+\frac{1}{2,500^{2}}}=21,459 \mathrm{~km} \rightarrow \underline{21,500 \mathrm{~km}} \\
\sigma_{\text {wav }}= \\
\frac{1}{\sqrt{\frac{1}{\sigma_{A}^{2}}+\frac{1}{\sigma_{B}^{2}}}=\frac{1}{\sqrt{\frac{1}{3,000^{2}}+\frac{1}{2,500^{2}}}}=1,921 \mathrm{~km} \rightarrow \underline{1,900 \mathrm{~km}}} \\
R_{\text {wav }}=21,500 \pm 1,900 \mathrm{~km}
\end{gathered}
$$

