
3 8 3 5 3 9 3 9 3 4 1 8

Rejection of Data
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if n < 0.5 the measurement is “improbable” and can be rejected according to Chauvenet’s criterion 
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A student makes 5 measurements of the period of a pendulum and gets 
T = 2.8, 2.5, 2.7, 2.7, 2.3 s.

Example Problem 

T  2.8, 2.5, 2.7, 2.7, 2.3 s.
Should any of these measurements be dropped?

Calculate the average 
1 ∑2.8 2.5 2.7 2.7 2.3+ + + +

Calculate the standard deviation
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The measurement furthest from the mean is 2.3 s 
giving tsus = 0.3/0.2 = 1.5
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Look up the probability to be further off, P = 13.36 %

Multiply by the number of trials to get the expected 
b f t th t f ff 5×0 1336 ≈ 0 67

Table A

number of events that far off, n = 5×0.1336 ≈ 0.67

0.67 ≥ 0.5 → Do not drop this measurement (or any other)



:    A AA x x σ= ±

Weighted Averages
combining separate measurements: what is the best estimate for x ?
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Weighted Averages

x1, x2, …, xN - measurements of a single quantity x with uncertainties σ1, σ2, …, σN
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using error propagation



Example of Weighted Average

three measurements of a resistance
what is the best estimate for R ?
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Least-Squares Fitting

consider two variables x and y that are connected by a linear relation
y = A + Bxy  A + Bx

graphical method of 
finding the best straight 
line to fit a series of 
experimental points 

x1, x2, …, xN find A and By1, y2, …, yN
find A and B

analytical method of finding the best straight line to fit a series of experimental 
i t i ll d li i th l t fit f lipoints is called linear regression or the least-squares fit for a line



(true value for )i iy A Bx= +

Calculation of the Constants A and B
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Uncertainties in y, A, and B

y = A + Bx
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Example of Calculation of the Constants A and B
if volume of an ideal gas is kept constant, 
its temperat re is a linear f nction of its press reits temperature is a linear function of its pressure 

absolute zero of temperature A = ?
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Example Problem 
Two students measure the radius of a planet and get final answers 
R =25 000±3 000 km and R =19 000±2 500 kmRA=25,000±3,000 km and RB=19,000±2,500 km. 
(a) Assuming all errors are independent and random, what is the discrepancy and what 
is its uncertainty?
(b) Assuming all quantities are normally distributed as expected, what would be the(b) Assuming all quantities are normally distributed as expected, what would be the 
probability that the two measurements would disagree by more than this?
Do you consider the discrepancy in the measurements significant (at the 5% level)?

2 2 2 2

25,000 19,000 6,000

3,000 2,500 3,905 4,000
A B A B

A B

R R R R

R R km

km kmσ σ σ−

− = − =

= + = + = →

(a)

6,000 4,000
6,000 1.5
4 000

A BR R km

t

− = ±

= =(b)
4,000

Table A: Probability to be within 1.5σ is 86.64 % ≈ 87 %. Therefore, the 
probability that the two measurements would disagree by more than this 

( )

p y g y
is 100 – 87 = 13 %.
The discrepancy in the measurements is not significant (at the 5% level). 



Two students measure the radius of a planet and get final answers 
R =25 000±3 000 km and R =19 000±2 500 km

Example Problem 

RA=25,000±3,000 km and RB=19,000±2,500 km. 
The best estimate of the true radius of a planet is the weighted average. Find the best 
estimate of the true radius of a planet and the error in that estimate. 
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