Example:

A student measures a quantity x many times and calculates the mean as $\bar{x}=10$ and the standard deviation as $\sigma_{x}=1$. What fraction of his readings would you expect to find between 11 and 12?

$$
\begin{aligned}
& G_{X, \sigma}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-X)^{2} / 2 \sigma^{2}} t=\frac{x-X}{\sigma} \\
& \operatorname{Prob}(X \leq x \leq X+t \sigma)=\int_{X}^{X+t \sigma} G_{X, \sigma}(x) d x=\frac{1}{\sqrt{2 \pi}} \int_{0}^{t} e^{-z^{2} / 2} d z
\end{aligned}
$$

The probability of a measurement to be between $X+t_{1} \sigma$ and $X+t_{2} \sigma$

$$
\operatorname{Prob}\left(X+t_{1} \sigma \leq x \leq X+t_{2} \sigma\right)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{t_{2}} e^{-z^{2} / 2} d z-\frac{1}{\sqrt{2 \pi}} \int_{0}^{t_{1}} e^{-z^{2} / 2} d z
$$

$$
\begin{aligned}
& t_{1}=\frac{x_{1}-X}{\sigma}=\frac{11-10}{1}=1 \\
& t_{2}=\frac{x_{2}-X}{\sigma}=\frac{12-10}{1}=2
\end{aligned}
$$

$$
\operatorname{Prob}(X+\sigma \leq x \leq X+2 \sigma)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{2} e^{-z^{2} / 2} d z-\frac{1}{\sqrt{2 \pi}} \int_{0}^{1} e^{-z^{2} / 2} d z=48 \%-34 \%=14 \%
$$

Table B

Acceptability of a Measured Answer

(value of x) $=x_{\text {best }} \pm \sigma$
$x_{\text {exp }}$ - expected value of x, e.g. based on some theory
$x_{\text {best }}$ differs from $X_{\text {exp }} \longrightarrow t=\frac{\left|x_{\text {best }}-x_{\text {exp }}\right|}{\sigma}$
Table A.
by t standard deviations

boundary for unreasonable improbability
the result is beyond the boundary for unreasonable improbability
\longrightarrow the result is unacceptable

Experiment 4: Refraction and Interference with Microwaves

Experiment 5: Measurements Magnetic Fields

Experiment 6: Diffraction and Interference with Coherent Light

Experiment 7: Lenses and the Human Eye

Experiment 5: Measurements Magnetic Fields

Goal: use fundamental electromagnetic equations and principles to measure the magnetic fields

1. Flip Coil Method
2. Current Balance Technique

1. Flip Coil Method

Basic Equations

Faraday's law $\quad V=-\frac{d}{d t} \int \mathbf{B} \cdot d \mathbf{A}=-\frac{d \phi}{d t}$
V is the integral around a closed contour $=$ the voltage around a circuit
ϕ is the magnetic flux passing through the surface contained by the circuit
the integral of the magnetic field over the area of the circuit $\mathrm{A}: \phi=\int \mathbf{B} \cdot d \mathbf{A}$
the Lorentz force on a point charge: $\quad \mathbf{F}=q \mathbf{v} \times \mathbf{B}$
the force produced by a small current element $I d \mathbf{l}: \quad d \mathbf{F}=I d \mathbf{l} \times \mathbf{B}$
the units: V (Volts), ϕ (Tesla- $\mathrm{m}^{2}=$ Weber), \mathbf{F} (Newtons), I (Amperes), \mathbf{B} (Tesla), length (m)

An RC integrator

how do we find the magnitude of \boldsymbol{B} (or ϕ) from its derivative?
integrate the equation $V=-\frac{d}{d t} \int \mathbf{B} \cdot d \mathbf{A}=-\frac{d \phi}{d t}$

$$
V=\frac{Q}{C} \rightarrow V_{o}\left(t_{1}\right)=\frac{1}{C} \int_{0}^{t_{1}} I d t
$$

$I=\frac{V_{i}-V_{o}}{R} \longrightarrow$

$$
V_{o}\left(t_{1}\right)=\frac{1}{R C} \int_{0}^{t_{1}}\left[V_{i}(t)-V_{o}(t)\right] d t
$$

$$
=\frac{1}{R C} \int_{0}^{t_{1}} V_{i}(t) d t-\frac{1}{R C} \int_{0}^{t_{1}} V_{o}(t) d t
$$

$\begin{array}{lll}\begin{array}{l}\text { for large } R C \\ R C \gg t_{1}\end{array} & \longrightarrow\end{array} \left\lvert\, \begin{aligned} & \text { (} \\ & \\ & \\ & \\ & \\ & V_{o}\left(t_{1}\right)=\frac{1}{R C} \int_{0}^{t_{1}} V_{i}(t) d t\end{aligned}\right.$
connect an integrator to a loop of wire located in a time-varying magnetic field increasing from $B=0$ and obtain an output

$$
\begin{aligned}
& \text { at } V_{o}(t)=\frac{1}{R C} \int_{0}^{t} \frac{d \phi}{d t} d t=\frac{\phi(t)}{R C} \\
& V_{i}=-\frac{d \phi}{d t} \\
& \text { Faraday's law } \\
& V_{o}\left(t_{1}\right)=\frac{1}{R C} \int_{0}^{t_{1}} V_{i}(t) d t \\
& \text { RC integrator }
\end{aligned}
$$

for uniform B: $\phi=A B \longrightarrow V_{o}(t)=\frac{A}{R C} B(t)$
flip-coil technique: take our loop which initially rests in a place where $B=0$ and thrust it quickly $(t \ll R C)$ into the magnetic field region (or visa versa)

$$
\Delta V_{o}=\frac{n A}{R C} \Delta B
$$

for n coils
moving a flip-coil out of a magnetic field, while integrating the induced currents with an RC circuit

$$
\Delta V_{o}=\frac{n A}{R C} \Delta B
$$

after the "flip" has occurred and the integrator output voltage has jumped to ΔV_{o} the capacitor discharges through R and its voltage decays as $V(t)=V_{o} e^{-t / R C}$

the output voltage for a flip coil moved rapidly out of a magnetic field region and integrated by an RC circuit followed by discharge of the capacitor

actual decay time constant is $R_{2} C$, where $R_{2}=\frac{R_{1} R}{R_{1}+R}$
keep the flip time t_{1} small $\left(t_{1} \ll R_{2} C\right)$

2. Current Balance Technique

a wire carrying current I feels a force: $F_{x}=\int I_{y} B_{z}(y) d y$

Determine the magnetic field of the magnet by measuring the force on a current in the field. Choose several hairpins of different lengths. For each hairpin choose several different currents. Measure the mass difference from the scale and calculate the Lorentz force.

