Example:

A student measures a quantity *x* many times and calculates the mean as $\overline{x} = 10$ and the standard deviation as $\sigma_x = 1$. What fraction of his readings would you expect to find between 11 and 12?

$$G_{X,\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-X)^{2}/2\sigma^{2}} \qquad t = \frac{x-X}{\sigma}$$
Table B
Prob $(X \le x \le X + t\sigma) = \int_{X}^{X+t\sigma} G_{X,\sigma}(x) dx = \frac{1}{\sqrt{2\pi}} \int_{0}^{t} e^{-z^{2}/2} dz$
The probability of a measurement to be between $X + t_{1}\sigma$ and $X + t_{2}\sigma$
Prob $(X + t_{1}\sigma \le x \le X + t_{2}\sigma) = \frac{1}{\sqrt{2\pi}} \int_{0}^{t_{2}} e^{-z^{2}/2} dz - \frac{1}{\sqrt{2\pi}} \int_{0}^{t_{0}} e^{-z^{2}/2} dz$

$$t_{1} = \frac{x_{1} - X}{\sigma} = \frac{11 - 10}{1} = 1$$

$$t_{2} = \frac{x_{2} - X}{\sigma} = \frac{12 - 10}{1} = 2$$
Prob $(X + \sigma \le x \le X + 2\sigma) = \frac{1}{\sqrt{2\pi}} \int_{0}^{2} e^{-z^{2}/2} dz - \frac{1}{\sqrt{2\pi}} \int_{0}^{1} e^{-z^{2}/2} dz = 48\% - 34\% = \frac{14\%}{16}$
Table B

Acceptability of a Measured Answer

Experiment 4: Refraction and Interference with Microwaves

Experiment 5: Measurements Magnetic Fields

Experiment 6: Diffraction and Interference with Coherent Light

Experiment 7: Lenses and the Human Eye

Experiment 5: Measurements Magnetic Fields

Goal: use fundamental electromagnetic equations and principles to measure the magnetic fields

- 1. Flip Coil Method
- 2. Current Balance Technique

1. Flip Coil Method

Basic Equations

Faraday's law $V = -\frac{d}{dt} \int \mathbf{B} \cdot d\mathbf{A} = -\frac{d\phi}{dt}$

V is the integral around a closed contour = the voltage around a circuit ϕ is the <u>magnetic flux</u> passing through the surface contained by the circuit \uparrow the integral of the magnetic field over the area of the circuit A: $\phi = \int \mathbf{B} \cdot d\mathbf{A}$

the Lorentz force on a point charge: $\mathbf{F} = q\mathbf{v} \times \mathbf{B}$

the force produced by a small current element $I d\mathbf{l}$: $d\mathbf{F} = I d\mathbf{l} \times \mathbf{B}$

the units: V (Volts), ϕ (Tesla-m²=Weber), **F** (Newtons), I (Amperes), **B** (Tesla), length (m)

An RC integrator

how do we find the magnitude of **B** (or ϕ) from its derivative?

integrate the equation $V = -\frac{d}{dt} \int \mathbf{B} \cdot d\mathbf{A} = -\frac{d\phi}{dt}$ $V = \frac{Q}{C} \longrightarrow V_o(t_1) = \frac{1}{C} \int_0^{t_1} I dt$ R С V_i(t) V_o(t) $I = \frac{V_i - V_o}{R} \longrightarrow$ $V_{o}(t_{1}) = \frac{1}{RC} \int_{0}^{t_{1}} \left[V_{i}(t) - V_{o}(t) \right] dt$ $=\frac{1}{RC}\int_{-1}^{t_{1}}V_{i}(t)dt-\frac{1}{RC}\int_{-1}^{t_{1}}V_{o}(t)dt$ for large RC $RC >> t_1$ $V_o(t_1) \stackrel{\bigstar}{=} \frac{1}{RC} \int_{0}^{t_1} V_i(t) dt$ circuit acts an integrator

connect an integrator to a loop of wire located in a time-varying magnetic field

for uniform B:
$$\phi = AB \longrightarrow V_o(t) = \frac{A}{RC}B(t)$$

flip-coil technique: take our loop which initially rests in a place where B = 0 and thrust it quickly ($t \ll RC$) into the magnetic field region (or visa versa)

for *n* coils

while integrating the induced currents with an RC circuit

after the "flip" has occurred and the integrator output voltage has jumped to ΔV_o

the capacitor discharges through R and its voltage decays as $V(t) = V_o e^{-t/RC}$

the output voltage for a flip coil moved rapidly out of a magnetic field region and integrated by an RC circuit followed by discharge of the capacitor

actual decay time constant is R_2C , where $R_2 = \frac{R_1R}{R_1 + R}$ keep the flip time t_1 small ($t_1 << R_2C$)

000

2. Current Balance Technique

Determine the magnetic field of the magnet by measuring the force on a current in the field. Choose several hairpins of different lengths. For each hairpin choose several different currents. Measure the mass difference from the scale and calculate the Lorentz force.