## Experiment 3: Resonance in LRC Circuits Driven by Alternating Current

Goal: examine LRC series circuit driven by AC

1. Determine quality factor, resonance frequency, and bandwidth
2. Measure phase shift (extra credit)


## Complex Impedance

The complex generalization of resistance is impedance $\quad Z=\frac{V}{\tilde{I}}$
$\tilde{V}=V_{0} e^{i \omega t}=Z \tilde{I} \quad \tilde{I}=I_{0} e^{i(\omega t+\phi)}$
$\phi$ is the amount by which $V$ and $I$ are out of phase
a capacitor

$$
\begin{aligned}
V_{C} & =\frac{Q}{C}=\frac{1}{C} \int I d t \quad \frac{d V_{C}}{d t}=\frac{I}{C} \\
\tilde{I} & =C \frac{d}{d t}\left(V_{C 0} e^{i w t}\right) \\
& =i \omega C\left(V_{C 0} e^{i w t}\right) \\
& =i \omega C\left(Z_{C} \tilde{I}\right)
\end{aligned}
$$

$$
Z_{C}=\frac{1}{i \omega C}
$$

an inductor

$$
\begin{aligned}
V_{L} & =L \frac{d I}{d t} \\
\tilde{V}_{L} & =L \frac{d}{d t}\left(\frac{\tilde{V_{L}}}{Z_{L}}\right) \\
& =\frac{i \omega L}{Z_{L}} V_{L 0} e^{i \omega t} \\
& =\frac{i \omega L}{Z_{L}} \tilde{V}_{L}
\end{aligned}
$$

$$
Z_{L}=i \omega L
$$

## Complex Numbers

$$
c=a+i b
$$

$a$ and $b$ are real numbers, $i=\sqrt{-1}$


relationships between Cartesian and polar coordinates

$$
\begin{array}{ll}
r=\sqrt{a^{2}+b^{2}} & a=r \cos (\theta) \\
\theta=\arctan \left(\frac{b}{a}\right) & b=r \sin (\theta)
\end{array}
$$

## LRC Series Circuit Driven by AC


$R$ is the total resistance in the loop $R_{R}$ is the resistance of only the resistor

Kirchhoff's Law $\quad V_{S}+V_{L}+V_{R}+V_{C}=0$

$$
V_{S}-I\left(Z_{L}+Z_{R}+Z_{C}\right)=0 \rightarrow V_{S}=I(i \omega L+R+1 /(i \omega C))
$$

$$
\begin{array}{ll}
V_{S}-I\left(Z_{L}+Z_{R}+Z_{C}\right)=0 \rightarrow V_{S}=I(i \omega L+R+1 /(i \omega C))
\end{array} \quad \begin{aligned}
& c=a+i b=r e^{i \phi} \\
& r=\sqrt{a^{2}+b^{2}} \\
& \theta=\arctan \left(\frac{b}{a}\right)
\end{aligned}
$$

$$
\begin{aligned}
& {\left[R+i\left(\omega L-\frac{1}{\omega C}\right)\right]=\sqrt{R^{2}+L^{2}\left(\omega-\frac{1}{\omega L C}\right)^{2}} \exp \left[i \arctan \left(\frac{\omega L}{R}-\frac{1}{\omega R C}\right)\right]} \\
& \left|Z_{\text {Total }}\right|=\sqrt{R^{2}+L^{2}\left(\omega-\frac{1}{\omega L C}\right)^{2}}=R \sqrt{1+Q^{2}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)^{2}} \\
& \omega_{0}=\sqrt{\frac{1}{L C}}, \text { and } Q=\frac{1}{R} \sqrt{\frac{L}{C}}=\frac{1}{\omega_{0} R C}
\end{aligned} \begin{aligned}
& \tilde{V}=V_{0} e^{i o t} \\
& \tilde{V}=\tilde{I} Z \\
& V_{0} e^{i \omega t}=\tilde{I}\left|Z_{\text {total }}\right| e^{i \phi} \\
& \phi=\arctan \left(\frac{\omega L}{R}-\frac{1}{\omega R C}\right)=\arctan \left[Q\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)\right]
\end{aligned} \quad \tilde{I}=\frac{V_{0}}{\mid Z_{\text {total }} e^{i(\omega t-\phi)}} .
$$

## Voltage over the resistor

$$
\begin{aligned}
\left|V_{R}\right| & =|I|\left|Z_{R}\right|=V_{0} \frac{\left|Z_{R}\right|}{\left|Z_{\text {Total }}\right|} \\
& =\frac{V_{0} R_{R}}{R \sqrt{1+Q^{2}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)^{2}}}
\end{aligned}
$$

$$
V_{R} \text { is greatest when } \quad \omega=\omega_{0}
$$

resonance frequency
power $P \propto V^{2}$

the half power points occur when the voltage decreases to $1 / \sqrt{2}$ of its peak value, which happens at $\omega=\omega_{1}$ and $\omega=\omega_{2}$
$\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{1+Q^{2}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)^{2}}} \rightarrow Q^{2}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)^{2}=1 \longrightarrow Q=\frac{\omega_{0}}{\omega_{2}-\omega_{1}} \leftarrow \underline{\text { bandwidth }}$

## The Q multiplier

$$
\left|Z_{\text {total }}\right|=R \sqrt{1+Q^{2}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)^{2}} \quad \quad\left|Z_{\text {total }}\right|=R \quad \text { at } \omega=\omega_{0}
$$

voltage over the capacitor at $\omega=\omega_{0}$

$$
V_{C 0} \equiv\left|V_{C}\left(\omega_{0}\right)\right|=\frac{V_{0}}{\left|Z_{\text {total }}\right|} \frac{1}{\omega_{0} C}=\frac{V_{0}}{R} \frac{1}{\omega_{0} C}=\frac{V_{0}}{R} \sqrt{\frac{L}{C}}=V_{0} Q
$$



$Q=\frac{V_{C 0}}{V_{0}}$

$$
\omega_{0}=\sqrt{\frac{1}{L C}}
$$

$$
Q=\frac{1}{R} \sqrt{\frac{L}{C}}
$$

$$
Q=\frac{V_{C 0}}{V_{0}}
$$

way to measure $Q$

## Voltage Phase Offsets of Circuit Elements

for a resistor

$$
\tilde{V}_{R}=\tilde{I} Z_{R}=\tilde{I} R_{R}=\frac{V_{0}}{\left|Z_{\text {total }}\right|} R_{R} e^{i(\omega t-\phi)}
$$

where $\phi=\phi_{R}(\omega) \equiv-\arctan \left(Q\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)\right)$


$\phi_{R}\left(\omega_{1}\right) \equiv-\arctan (-1)=\frac{\pi}{4}$
$\phi_{R}\left(\omega_{0}\right) \equiv 0$
$\phi_{R}\left(\omega_{2}\right) \equiv-\arctan (+1)=-\frac{\pi}{4}$
following same procedure:

$$
\phi_{L}(\omega) \equiv-\arctan \left(Q\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)\right)+\frac{\pi}{2} \quad \phi_{C}(\omega) \equiv-\arctan \left(Q\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)\right)-\frac{\pi}{2}
$$

## Limiting Distributions


$f(x) d x=$ fraction of measurements that fall between $x$ and $x+d x$ $=$ probability that any measurement will give an answer between $x$ and $x+d x$

$$
\begin{aligned}
\int_{a}^{b} f(x) d x= & \text { fraction of measurements } \\
& \text { that fall between } x=a \text { and } x=b \\
= & \text { probability that any } \\
& \text { measurement will give an } \\
& \text { answer between } x=a \text { and } x=b
\end{aligned}
$$

$$
\int_{-\infty}^{+\infty} f(x) d x=1 \quad \text { normalization condition }
$$

## The Gauss, or Normal Distribution

 the limiting distribution for a measurement subject to many small random errors is bell shaped and centered on the true value of $x$
the mathematical function that describes the bell-shape curve is called the normal distribution, or Gauss function


prototype function

$$
e^{-x^{2} / 2 \sigma^{2}}
$$

$$
e^{-(x-X)^{2} / 2 \sigma^{2}}
$$

$\sigma$ - width parameter
$X$ - true value of $x$

## The Gauss, or Normal Distribution

normalize $\begin{array}{r}e^{-(x-x)^{2} / 2 \sigma^{2}} \longrightarrow \int_{-\infty}^{+\infty} f(x) d x=1 \\ \\ G_{X, \sigma}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-X)^{2} / 2 \sigma^{2}}\end{array}$
standard deviation $\sigma_{x}=$ width parameter of the Gauss function $\sigma$ the mean value of $x=$ true value $X$


## The standard Deviation as 68\% Confidence Limit

$$
\underbrace{G_{X, \sigma}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-X)^{2} / 2 \sigma^{2}}}_{\substack{G_{x o}(x)}} \quad \begin{array}{ll}
\operatorname{Prob}(\text { within } \sigma) & =\int_{X-\sigma}^{X+\sigma} G_{X, \sigma}(x) d x \\
& =\frac{1}{\sigma \sqrt{2 \pi}} \int_{X-\sigma}^{X+\sigma} e^{-(x-X)^{2} / 2 \sigma^{2}} d x \\
& (x-X) / \sigma=z
\end{array}
$$


$\operatorname{Prob}($ within $\sigma)=\frac{1}{\sqrt{2 \pi}} \int_{-1}^{1} e^{-z^{2} / 2} d z$
$\operatorname{Prob}($ within $t \sigma)=\frac{1}{\sqrt{2 \pi}} \int_{-t}^{t} e^{-z^{2} / 2} d z$

$\longleftarrow \operatorname{erf}(t)$ - error function
the probability that a measurement will fall within one standard deviation of the true answer is $68 \%$ $x=x_{\text {best }} \pm \delta x \quad \delta x=\sigma$

