
Experiment 2:  Oscillation and Damping in the LRC Circuit

G l i i it i ti f i d t i t d itGoal: examine a circuit consisting of one inductor, one resistor, and one capacitor 

1. Apply a constant voltage over the LRC circuit and view the voltage drop over the various 
elements of the circuit with the oscilloscopep

2. Examine underdamped, critically damped, and overdamped oscillations. 

3 Determine quality factor frequency critical resistance and inductance of unknown3. Determine quality factor, frequency, critical resistance, and inductance of unknown 
inductor. 



LRC circuit

Oh ’ L
Voltage Drops Over Various Circuit Elements

The voltage drop across a resistor is proportional 
V = IR

Ohm’s Law

to the current and the resistance

The voltage drop across a capacitor is proportional 
to the charge held on either side of the capacitor

VR = IR
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Q
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to the charge held on either side of the capacitor

The voltage drop across an inductor is proportional 
to the change in the current

C C ∫

VL = L
dI
dt

An inductor is a series of coils. 
The current flowing through inductor creates magnetic field in the interior of these coils.
A changing magnetic field creates an electric field.c a g g ag et c e d c eates a e ect c e d.

Ampère's circuital law
Faraday's law of induction



LRC circuit

V V V V 0Ki hh ff’ L VS + VL + VC + VR = 0
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Kirchhoff’s Law: 

in this experiment you will be using a square wave with a large period to produce constant VS

differentiate equation with respect to time 
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undamped oscillations
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critical value of τ

underdamped (τ > τC )              critical (τ = τC )                   overdamped (τ < τC )
the discriminant is negative      the discriminant is 0            the discriminant is positive g p
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The Underdamped Oscillator
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the envelope of the oscillation
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the decay time of the LRC series circuit 
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Energy of Oscillation

Q
L 1 L

The Quality factor Q = 2π
Energy of Oscillation

Energy lost in one cycle
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for large Q   ω ≈ ω0 Q = πn
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oscillation period T = 2π / ω



Energy
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consider an undamped oscillator R = 0

I = I0 sinω 0t

VC =
1
C

Idt∫ = −
I0

ω C
cosω 0t EC =

1
2

I0
2

ω 2C
cos2 ω0t

EL =
2

LI0 sin ωt0

C∫ ω 0C 2 ω0C

EC + EL =
1
2

I0
2 L sin2 (ω0t) +

cos2 (ω0t)
C / LC

⎛
⎝⎜

⎞
⎠

the total energy in the circuit

α = ± −
1

LC
= ±iω0  where ω0 =

1
LC

2 C / LC⎝ ⎠

=
LI0

2

2

energy is conserved and oscillates between L and C



Energy

R ≠ 0

the stored energy is eventually lost because the power loss I2R in the resistorthe stored energy is eventually lost because the power loss I R in the resistor

the amount of energy which the resistor removes each cycle of oscillation
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Summary

I(t) = I e− t /2τ sinωt for τ = L / Rtime dependence I(t) = I0e sinωt for τ = L / R
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Histograms and Distributions

b hi t
10 measurements:
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∆ =

the area of the th rectanglef k∆ =
Bin size k∆

fraction of measurements in k-th bin

the area of the -th rectangle
has the same significance 
as the height  of the -th bar in a bar histogram
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Limiting Distributions
kf

N = 10

kf

as the number of measurements 
approaches infinity, their distribution 
approaches some definite continuous curvef

xk

approaches some definite continuous curve

this curve is called the limiting distribution, f(x)
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Limiting Distributions

f(x) dx = fraction of measurements = fraction of measurements( )
b
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that fall between x and x+dx 

= probability that any 
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