## Experiment 2: Oscillation and Damping in the LRC Circuit

Goal: examine a circuit consisting of one inductor, one resistor, and one capacitor

1. Apply a constant voltage over the LRC circuit and view the voltage drop over the various elements of the circuit with the oscilloscope
2. Examine underdamped, critically damped, and overdamped oscillations.
3. Determine quality factor, frequency, critical resistance, and inductance of unknown inductor.

## LRC circuit



Ohm's Law

## Voltage Drops Over Various Circuit Elements

The voltage drop across a resistor is proportional to the current and the resistance

The voltage drop across a capacitor is proportional to the charge held on either side of the capacitor

The voltage drop across an inductor is proportional to the change in the current

$$
\begin{aligned}
& V_{R}=I R \\
& V_{C}=\frac{Q}{C}=\frac{1}{C} \int I d t \\
& V_{L}=L \frac{d I}{d t}
\end{aligned}
$$



An inductor is a series of coils.
The current flowing through inductor creates magnetic field in the interior of these coils. A changing magnetic field creates an electric field.

## LRC circuit



Kirchhoff's Law: $V_{S}+V_{L}+V_{C}+V_{R}=0$

$$
V_{S}-L \frac{d I}{d t}-\frac{1}{C} \int I d t-I R=0
$$

in this experiment you will be using a square wave with a large period to produce constant $V_{S}$ differentiate equation with respect to time

$$
-L \frac{d^{2} I}{d t^{2}}-\frac{1}{C} I-R \frac{d I}{d t}=0 \quad \rightarrow \quad \frac{d^{2} I}{d t^{2}}+\frac{R}{L} \frac{d I}{d t}+\frac{1}{L C} I=0
$$

seek solution of the form $I=I_{0} e^{\alpha t} \longrightarrow \alpha^{2}+\frac{R}{L} \alpha+\frac{1}{L C}=0$

$$
\alpha=-\frac{R}{2 L} \pm \frac{1}{2} \sqrt{\frac{R^{2}}{L^{2}}-\frac{4}{L C}}
$$

$I=I_{0} e^{\alpha t}$

$$
\alpha=-\frac{R}{2 L} \pm \frac{1}{2} \sqrt{\frac{R^{2}}{L^{2}}-\frac{4}{L C}}
$$


undamped oscillations
if $R=0$

$$
\alpha= \pm \sqrt{-\frac{1}{L C}}= \pm i \omega_{0} \text { where } \omega_{0}=\sqrt{\frac{1}{L C}}
$$



$$
\begin{aligned}
I=I_{0} e^{\alpha t} \quad \alpha & =-\frac{R}{2 L} \pm \frac{1}{2} \sqrt{\frac{R^{2}}{L^{2}}-\frac{4}{L C}} \\
\tau & \equiv \frac{L}{R} \\
\alpha & =-\frac{1}{2 \tau} \pm \sqrt{\frac{1}{4 \tau^{2}}-\omega_{0}^{2}}
\end{aligned}
$$

$$
\text { critical value of } \tau \quad \tau_{C} \equiv \frac{1}{2 \omega_{0}}
$$


underdamped ( $\tau>\tau_{C}$ ) the discriminant is negative

$\operatorname{critical}\left(\tau=\tau_{C}\right)$ the discriminant is 0

overdamped ( $\tau<\tau_{C}$ ) the discriminant is positive

$$
I=I_{0} e^{\alpha t} \quad \alpha=-\frac{1}{2 \tau} \pm \sqrt{\frac{1}{4 \tau^{2}}-\omega_{0}^{2}}
$$

## The Underdamped Oscillator

$$
\alpha=-\frac{1}{2 \tau} \pm i \omega \quad \text { where } \quad \omega=\sqrt{\omega_{0}{ }^{2}-\frac{1}{4 \tau^{2}}}=\sqrt{\frac{1}{L C}-\frac{R^{2}}{4 L^{2}}}
$$

$$
I(t)=I_{0} e^{-t / 2 \tau} e^{ \pm i \omega t} \longrightarrow I(t)=I_{0} e^{-t / 2 \tau} \sin \omega t
$$


the decay time of the LRC series circuit

$$
t_{D}=2 \tau
$$

## The Quality factor

$$
\begin{aligned}
& Q=2 \pi \frac{\text { Energy of Oscillation }}{\text { Energy lost in one cycle }} \\
& Q=\omega_{0} \tau=\omega_{0} \frac{L}{R}=\frac{1}{R} \sqrt{\frac{L}{C}}
\end{aligned}
$$

change of oscillation frequency
$\left(\frac{\omega_{0}}{\omega}\right)^{2}=1+\frac{1}{4 Q^{2}}\left(\frac{\omega_{0}}{\omega}\right)^{2}$
for large $Q \omega \approx \omega_{0} \xrightarrow{Q=\pi n}$
$n$ is umber of oscillations in one decay time
$n=\frac{t_{D}}{T}=\frac{\omega t_{D}}{2 \pi}=\frac{\omega \tau}{\pi}$
oscillation period $\quad T=2 \pi / \omega$

## Energy

capacitor $\quad E_{C}=\frac{1}{2} C V^{2}$
inductor $\quad E_{L}=\frac{1}{2} L I^{2}$

consider an undamped oscillator $R=0$

$$
\begin{array}{ll}
I=I_{0} \sin \omega_{0} t & E_{L}=\frac{1}{2} L I_{0}^{2} \sin ^{2} \omega_{0} t \\
V_{C}=\int \frac{1}{C} I d t=-\frac{I_{0}}{\omega_{0} C} \cos \omega_{0} t & E_{C}=\frac{1}{2} \frac{I_{0}^{2}}{\omega_{0}^{2} C} \cos ^{2} \omega_{0} t
\end{array}
$$

the total energy in the circuit $\quad E_{C}+E_{L}=\frac{1}{2} I_{0}^{2}\left(L \sin ^{2}\left(\omega_{0} t\right)+\frac{\cos ^{2}\left(\omega_{0} t\right)}{C / L C}\right)$

$$
=\frac{L I_{0}^{2}}{2}
$$

$$
\omega_{0}=\sqrt{\frac{1}{L C}}
$$

energy is conserved and oscillates between $L$ and $C$

## Energy

$\underline{R \neq 0}$

the stored energy is eventually lost because the power loss $I^{2} R$ in the resistor
the amount of energy which the resistor removes each cycle of oscillation
$E_{\text {loss } / \text { cycle }}=\int_{0}^{T} I^{2} R d t=I_{0}^{2} R \int_{0}^{T} \sin ^{2}(\omega t) d t=I_{0}^{2} \frac{R T}{2}$
$Q=2 \pi \frac{\text { Energy of Oscillation }}{\text { Energy lost in one cycle }}$
$\longrightarrow Q=2 \pi \frac{\frac{1}{2} L I_{0}{ }^{2}}{\frac{1}{2} R I_{0}{ }^{2} T}=2 \pi f \frac{L}{R}=\omega \tau$

## Summary

time dependence

$$
I(t)=I_{0} e^{-t / 2 \tau} \sin \omega t \text { for } \tau=L / R
$$

frequency
$\omega=\sqrt{\omega_{0}^{2}-\frac{1}{4 \tau^{2}}}$ for $\omega_{0}=\frac{1}{\sqrt{L C}}$
decay time
$t_{D}=2 \tau=2 \frac{L}{R}$
quality factor
critical damping
$Q=\omega_{0} \tau=\omega_{0} \frac{L}{R}=\frac{1}{R} \sqrt{\frac{L}{C}}$
$R_{\text {critical }}=2 \omega_{0} L=2 \sqrt{\frac{L}{C}}$


## Histograms and Distributions

10 measurements:
$26,24,26,28,23,24,25,24,26,25$
different values
number of occurrences

| $x_{k}$ | 23 | 24 | 25 | 26 | 27 | 28 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $n_{k}$ | 1 | 3 | 2 | 3 | 0 | 1 |

$F_{k} \quad$ bar histogram

$F_{k}=\frac{n_{k}}{N}$ fraction of measurements that gave the result $x_{k}$

$f_{k} \Delta_{k}=$ the area of the $k$-th rectangle has the same significance as the height $F_{k}$ of the $k$-th bar in a bar histogram

## Limiting Distributions



## Limiting Distributions


$f(x) d x=$ fraction of measurements that fall between $x$ and $x+d x$
$=$ probability that any measurement will give an answer between $x$ and $x+d x$

$$
\begin{aligned}
\int_{a}^{b} f(x) d x= & \text { fraction of measurements } \\
& \text { that fall between } x=a \text { and } x=b \\
= & \text { probability that any } \\
& \text { measurement will give an } \\
& \text { answer between } x=a \text { and } x=b
\end{aligned}
$$

$$
\int_{-\infty}^{+\infty} f(x) d x=1 \quad \text { normalization condition }
$$

