Physics 214 UCSD/225a UCSB Lecture 7 Finish Chapter 2 of H&M

- November revolution, charm and beauty CP symmetry and violation
- Simple example
- Unitarity matrix for leptons and quarks
 Beginning of Neutrino Physics

We'll skip some stuff in Chapter 2

- Magnetic moment of proton etc.
- November revolution
 - Charm
 - Beauty
 - OZI suppression
- I encourage you to read up on this in chapter 2 of H&M

CP Symmetry

- So far, we talked about charge conjugation as the symmetry between particle and antiparticle.
- Well, that was good enough for QCD, but makes no sense in weak interactions.
- For weak interactions we need a simultaneous flip of Charge and Parity, or CP conjugation.
- We will discuss this in detail next quarter. Today, we simply introduce some basics, and introduce CP violation.

Simple Example

anti-b d Meson

CP (
$$\overline{B^0} \rightarrow K^-\pi^+$$
) = B⁰ $\rightarrow K^+\pi^-$

b anti-d Meson

- Theory: If the partial widths for these two decays are not the same, then CP is violated.
 - Experiment: if the branching fractions for these two decays are not the same then CP is violated.

 $\delta =$ strong phase shift

 $\gamma =$ difference in weak phase

 $CP \gamma = -\gamma$ $CP \delta = +\delta$

Breaking CP is easy

⇒Add complex coupling to Lagrangian.
⇒Allow 2 or more channels
⇒Add CP symm. Phase, e.g. via dynamics.

T,P are real numbers.

$$A_{cp} = \frac{\mathcal{B}(B^{0} \to K^{+} \pi^{-}) - \mathcal{B}(\bar{B^{0}} \to K^{-} \pi^{+})}{\mathcal{B}(B^{0} \to K^{+} \pi^{-}) + \mathcal{B}(\bar{B^{0}} \to K^{-} \pi^{+})} = \frac{\left|P + Te^{-i(\delta - \gamma)}\right| - \left|P + Te^{-i(\delta + \gamma)}\right|}{\left|P + Te^{-i(\delta - \gamma)}\right| + \left|P + Te^{-i(\delta + \gamma)}\right|}$$

$$= \frac{-2|TP| \sin \gamma \sin \delta}{|T|^2 + |P|^2 + 2|TP| \cos \gamma \cos \delta}$$

The rest is simple algebra.

CP Violation in Standard Model

$$\mathcal{L}_{CC} = \frac{g_2}{2\sqrt{2}} J^+_{\mu} W^{+\mu} + J^-_{\mu} W^{-\mu}$$
$$J^+_{\mu} = (\bar{\nu}_{eL} \bar{\nu}_{\mu L} \bar{\nu}_{\tau L}) \gamma_{\mu} \begin{pmatrix} e^-_L \\ \mu^-_L \\ \tau^-_L \end{pmatrix} + (\bar{u}_L \bar{c}_L \bar{t}_L) \gamma_{\mu} \mathbf{V}_{\mathbf{CKM}} \begin{pmatrix} d_L \\ s_L \\ b_L \end{pmatrix}$$

Note:

-> V_{CKM} is a 3x3 unitary matrix of couplings .

-> It provides the complex coupling in the Lagrangian to allow for CP violation.

We'll get back to the details next quarter.

Breaking CP in Standard Model

- Where does the CP violating phase come from?
 - 3x3 unitary matrix => 3 angles + 6 phases
 - 2N² parameters, N² constraints from unitarity
 - 6 spinors with arbitrary phase convention
 - Only relative phase matters because only $|M|^2$ is physical. \Rightarrow Only 5 phases can be used to define a convention.
 - \Rightarrow One phase left in 3x3 matrix that has physical consequences.

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} c_x c_z & s_x c_z & s_z e^{-i\phi} \\ -s_x c_y - c_x s_y s_z e^{i\phi} & c_x c_y - s_x s_y s_z e^{i\phi} & s_y c_z \\ s_x s_y - c_x c_y s_z e^{i\phi} & -c_x s_y - s_x c_y s_z e^{i\phi} & c_y c_z \end{pmatrix}$$

x,y,z are Euler angles. c=cos, s=sin.

Note: sin(z) = 0 <=> NO CP violating phase left !!!

CP violation summary

- CP violation is easy to add in field theory:
 - Complex coupling in Lagrangian
 - Interference of channels with:
 - Different CP violating phase
 - Different CP conserving phase
- Standard Model implements this via:
 - CP violating phase in charged current coupling across 3 families
 - CP conserving phase via:
 - Dynamics, e.g. Breit Wigner resonance lineshape
 - Flavor Mixing & oscillation in neutrino or quark sector
 - The scale of CP violation allowed in the standard model quark sector is well measured, and not sufficient for cosmology.

Let's look at neutrino sector in some detail !

Aside: Scale of CP violation

- Standard model allows for CP violation only in the quark sector.
- The existence of neutrino oscillations requires extending the standard model to include CP violation in the lepton sector.
- In hw4 problem 1c you will calculate what is sometimes called the "Jarlskog Invariant". You will show that the scale of CP violation allowed depends on the product of 4 sin terms:
 - The three family mixing angles
 - The CP violating phase

Mixing in Standard Model

- Weak eigenstates not equal mass eigenstates.
 - Mass eigenstates responsible for propagation in time.
 - Eigenstates of the Hamiltonian (excluding decay) are the mass eigenstates.
 - Weak eigenstates responsible for production and/or decay.
- ⇒ Oscillation between weak eigenstates as a function of time.
- \Rightarrow Discuss this in detail for Neutrino sector now.

Neutrino mixing in vacuum

- At the W vertex an electron-neutrino is created together with a positron.
- That electron-neutrino is a superposition of mass eigenstates: $|v_e(t)\rangle = \sum_{ei}^{3} U_{ei}^* |v_i(t)\rangle$
- The time evolution of the mass eigenstate can be described either in its rest-frame or in the labframe:

$$\left|\boldsymbol{v}_{i}(t)\right\rangle = e^{-im_{i}t_{i}}\left|\boldsymbol{v}_{i}(0)\right\rangle = e^{-i(E_{i}t-p_{i}L)}\left|\boldsymbol{v}_{i}(0)\right\rangle$$

• For interference among the mass eigenstates to be possible, they all have to have the same E because experimentally we average over time.

Interference for same energy states

- A neutrino beam does of course include a spectrum of neutrino energies.
- Each neutrino acquires a phase factor according to its energy: e^{-iE_jt}
- Two neutrinos with differing energies will thus have a relative phase factor of: $-i(E_i E_k)t$

 $e^{-i(E_j-E_k)t}$

- As the time between production and detection of the neutrino has a large spread, this phase factor leads to no observable interference.
- As a result, only states of equal energy contribute to the interference effect that is observed.

Oscillation Amplitude

$$Amp(\nu_{\mu} \rightarrow \nu_{\tau}) = \left\langle \nu_{\tau} \left| e^{-iEt} \sum_{i=1}^{3} e^{ip_{i}L} U_{\mu i}^{*} \right| \nu_{i} \right\rangle$$

$$Amp(\boldsymbol{v}_{\mu} \rightarrow \boldsymbol{v}_{\tau}) = e^{-iEt} \sum_{i,j=1}^{3} e^{ip_{i}L} U_{\mu i}^{*} U_{\tau j} \langle \boldsymbol{v}_{j} | \boldsymbol{v}_{i} \rangle$$

$$Amp(\nu_{\mu} \rightarrow \nu_{\tau}) = e^{-iEt} \sum_{i=1}^{3} e^{ip_i L} U_{\mu i}^* U_{\tau i}$$

Next we taylor expand p_i using:

$$p_i = \sqrt{E^2 - m_i^2} = E - \frac{m_i^2}{2E} + \dots$$

Oscillation Probability

$$Amp(\nu_{\mu} \to \nu_{\tau}) = e^{-iE(t-L)} \sum_{i=1}^{3} e^{-i\frac{m_{i}^{2}}{2E}L} U_{\mu i}^{*} U_{\tau i}$$
$$Pr \, ob(\nu_{\mu} \to \nu_{\tau}) = \left| Amp(\nu_{\mu} \to \nu_{\tau}) \right|^{2} = \left| \sum_{i=1}^{3} e^{-i\frac{m_{i}^{2}}{2E}L} U_{\mu i}^{*} U_{\tau i} \right|^{2}$$

In homework, you do this for the general case of N flavors. Here we do it for the simpler case of 2 flavors only. Note: For 2 flavors the U_{ik} are real, not imaginary.

Simple math aside

$$|1 - e^{ix}|^2 = (1 - [\cos x + i\sin x])(1 - [\cos x - i\sin x])$$
$$= [1 - \cos x]^2 + \sin^2 x$$
$$= 2(1 - \cos x)$$

We'll need this in a second.

2 flavor oscillation probability

$$\left| U_{11}U_{21}e^{-im_1^2\frac{L}{2E}} + U_{12}U_{22}e^{-im_2^2\frac{L}{2E}} \right|^2 = \left| U_{11}U_{21} + U_{12}U_{22}e^{i(m_1^2 - m_2^2)\frac{L}{2E}} \right|^2$$

$$= \left| -\cos\theta\sin\theta + \cos\theta\sin\theta e^{i(m_1^2 - m_2^2)\frac{L}{2E}} \right|^2 = \cos^2\theta\sin^2\theta \left| 1 - e^{i(m_1^2 - m_2^2)\frac{L}{2E}} \right|^2$$

$$= \cos^{2} \theta \sin^{2} \theta \Big[(1 - \cos \Delta)^{2} + \sin^{2} \Delta \Big] = 2 \cos^{2} \theta \sin^{2} \theta \Big[1 - \cos \Delta \Big]$$
$$= \frac{1}{2} \sin^{2} 2 \theta \Big[2 \sin^{2} \frac{\Delta}{2} \Big]$$
$$\Delta = (m_{1}^{2} - m_{2}^{2}) \frac{L}{2E}$$

This is a bit simplistic, as it ignores matter effects. We'll discuss those in next lecture.

Discussion of Oscillation Equation

$$\Pr{ob(v_e \to v_\mu)} = \sin^2 2\theta \left[\sin^2 \frac{(m_1^2 - m_2^2)L}{4E} \right]$$

- Depends on difference in mass squared.
 - No mixing if masses are identical
 - Insensitive to mass scale
 - Insensitive to mass hierarchy because $sin^2x = sin^2(-x)$
- Depends on $sin^2(2\theta)$
 - Need large mixing angle to see large effect
- Depends on L/4E
 - Exp. with unfortunate L/E won't see any effect.
 - Exp. with variable L/E can measure both angle and mass squared difference.
 - Exp. with $\Delta m^2 L/4E >>1$ and some energy spread average over sin² -> 1/2

Experimental situation

- Sources of electron neutrinos
 - Sun
 - Reactors

- Sources of muon neutrinos
 - From charged pion beams
 - Protons on target gives charged pions.
 - From charged pion decay in atmosphere

- Expect v_{μ} anti- v_{μ} in equal numbers
- Expect v_e half as many as v_μ or anti- v_μ
- Can change L as a function of Zenith angle. (L ~ 15km to L ~ 13,000km)
- v_e Oscillation to v_{μ} => See excess of v_{μ} vs zenith angle
- v_{μ} Oscillation to v_{e} => See excess of v_{e} vs zenith angle
- v_e Oscillation to v_{τ} => Deficit of v_e vs zenith angle
- ν_μ Oscillation to ν_τ
 => Deficit of ν_μ vs zenith angle

Let's walk through these arguments one by one!

- Expect v_{μ} anti- v_{μ} in equal numbers
 - There are equal number of π^+ and π^- produced in hadronic collisions in the atmosphere.
 - π^+ decays to $\mu^+ \nu_{\mu}$
 - π^- decays to μ^- anti- v_{μ}
- Expect v_e half as many as v_u or anti- v_u
 - π^+ decays to $\mu^+ \nu_{\mu}$
 - μ^+ decays to anti- ν_{μ} + e⁺ + ν_e
 - And accordingly for CP conjugate

For every v_e there is one v_{μ} and one anti- v_{μ} because of anti-muon decay chain. For every anti- v_e there is one v_{μ} and one anti- v_{μ} because of muon decay chain.

 Can change L as a function of Zenith angle. (L ~ 15km to L ~ 13,000km)

- v_e Oscillation to v_{μ}
 - \Rightarrow See excess of v_{μ}^{i} vs zenith angle
 - \Rightarrow L depends on zenith angle.
 - \Rightarrow only specific L gives you maximal interference effect for a given E
 - \Rightarrow deficit of ν_e and excess of ν_μ at the appropriate zenith angle.
- + ν_{μ} Oscillation to ν_{e}

=> See excess of v_e vs zenith angle

• v_e Oscillation to v_{τ}

=> Deficit of v_e vs zenith angle but no excess of v_u

ν_µ Oscillation to ν_τ
 => Deficit of ν_µ vs zenith angle but no excess of ν_e

Super Kamiokande Results

Left 2 plots: v_e as expected

> Right 2 plots: ν_μ deficit largest at large L

Neutrinos from the Sun

- Many mechanisms, all leading to electron neutrinos with varying energies.
 - Expect: 0.5 sin²(2θ) of solar model flux convolved with energy dependent efficiency if electron neutrino oscillations exist.
- Neutrino energy too low to produce muons or taus.
 - For decades, all experiments could measure was a neutrino flux half that of the solar neutrino model prediction.
 - People did not trust the model nor experiments as both are quite complicated!
 - Super Kamiokande was first to have pointing accuracy, and thus show that flux came from sun.
 - SNO showed that total neutrino flux agrees with solar model, and electron neutrino flux is short by factor 2.

Solar Model is Quite Complex

Neutrino Energies are quite small Very Challenging Experimentally for many decades

SNO allowed CC and NC, and was thus sensitive to all neutrino flavors => measures solar flux and electron neutrino flux.

$\begin{array}{l} \mbox{Reactor Experiments} \\ \mbox{All except KamLAND had L that is too small!} \\ \Rightarrow \mbox{Only KamLAND saw oscillations !!!} \\ \Rightarrow \mbox{KamLAND established v_e disappearance} \end{array}$

Interpretation

- Atmospheric must be $v_{\mu} \rightarrow v_{\tau}$
 - Though tau appearance has never been seen.
 - New experiment called Opera at Gran Sasso designed to observe tau appearance.
 - However, electron appearance is ruled out.
 - The state that is far in mass from the other two must have very little electron neutrino content!

Two Possible Mass Hierarchies

Things we have not discussed yet.

- Majorana Neutrinos -> see homework
- "Size of CP violation" -> see homework
- Getting well collimated E via off-axis -> see homework
- Reactor neutrinos and sintheta13 -> see homework
- Resolving the mass hierarchy -> Next lecture.