Physics 214 UCSD/225a UCSB

Lecture 13

- Finish H\&M Chapter 6
- Start H\&M Chapter 8

Result worthy of discussion

1. $\sigma \propto 1 / \mathrm{s}$ must be so on dimensional grounds
2. $\sigma \propto \alpha^{2}$ two vertices!
3. At higher energies, Z-propagator also contributes:

More discussion

4. Calculation of $e+e-->q$ qbar is identical as long as sqrt(s) >> Mass of quark.

Measurement of this cross section was very important !!!

Measurement of R

$$
R=\frac{\sigma\left(e^{+} e^{-} \rightarrow q \bar{q}\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}=3 \cdot \sum_{q-\text { flavor }} e_{q}^{2}
$$

Below charm threshold: $R=3\left[(2 / 3)^{2}+(1 / 3)^{2}+(1 / 3)^{2}\right]=2$
Between charm and bottom: $\mathrm{R}=2+3(4 / 9)=10 / 3$
Above bottom: $R=10 / 3+3(1 / 9)=11 / 3$

> Measurement of R was crucial for:
> a. Confirm that quarks have 3 colors
> b. Search for addititional quarks
> c. Search for additional leptons

Experimental Result

Ever more discussion

5. $\mathrm{d} \sigma / \mathrm{d} \Omega \propto\left(1+\cos ^{2} \theta\right)$
5.1θ is defined as the angle between e+ and mu+ in com. $\cos ^{2} \theta$ means that the outgoing muons have no memory of the direction of incoming particle vs antiparticle.
Probably as expected as the e+e- annihilate before the mu+mu- is created.
5.2 Recall, phase space is flat in $\cos \theta \cdot \cos ^{2} \theta$ dependence thus implies that the initial state axis matters to the outgoing particles. Why?

Helicity Conservation in relativistic limit

- You showed as homework that u_{L} and u_{R} are helicity eigenstates in the relativistic limit, and thus:

$$
\bar{u} \gamma^{\mu} u=\left(\bar{u}_{L}+\bar{u}_{R}\right) \gamma^{\mu}\left(u_{L}+u_{R}\right)
$$

- We'll now show that the cross terms are zero, and helicity is thus conserved at each vertex.
- We then show how angular momentum conservation leads to the cross section we calculated.

Let' do one cross product explicitly:

$$
\begin{aligned}
& \begin{array}{l}
\bar{u} \gamma^{\mu} u=\left(\bar{u}_{L}+\bar{u}_{R}\right) \gamma^{\mu}\left(u_{L}+u_{R}\right) \\
\bar{u}_{L}=u_{L}^{T^{*}} \gamma^{0}=u^{T^{*}} \frac{1}{2}\left(1-\gamma^{5}\right) \gamma^{0}=\bar{u} \frac{1}{2}\left(1+\gamma^{5}\right) \\
u_{R}=\frac{1}{2}\left(1+\gamma^{5}\right) u \\
\bar{u}_{L} \gamma^{\mu} u_{R}=\bar{u} \frac{1}{4}\left(1+\gamma^{5}\right) \gamma^{\mu}\left(1+\gamma^{5}\right) u=\bar{u} \gamma^{\mu} \frac{1}{4}\left(1-\gamma^{5}\right)\left(1+\gamma^{5}\right) u=0 \\
\\
\text { Here we have used: } \\
\begin{array}{ll}
\gamma^{5} \gamma^{u}=-\gamma^{u} \gamma^{5} \\
\gamma^{5}=\gamma^{5 T^{*}} \\
\gamma^{5} \gamma^{5}=1
\end{array} \\
\text { velicity conservation holds for all } \\
\text { vector and axialvector currents as E>>m. }
\end{array}
\end{aligned}
$$

- $\mathrm{e}_{\mathrm{L}}^{-} \mathrm{e}_{\mathrm{R}}{ }^{+}->\mathrm{mu}_{\mathrm{L}}^{-} \mathrm{mu}_{\mathrm{R}}{ }^{+} \quad \mathrm{J}_{\mathrm{z}}+1->+1$
- $\mathrm{e}_{\mathrm{L}}{ }^{-} \mathrm{e}_{\mathrm{R}}{ }^{+}->\mathrm{mu}_{\mathrm{R}}^{-} \mathrm{mu}_{\mathrm{L}}{ }^{+} \quad \mathrm{J}_{\mathrm{z}}+1->-1$
- $\mathrm{e}_{\mathrm{R}}{ }^{-} \mathrm{e}_{\mathrm{L}}{ }^{+}->\mathrm{mu}_{\mathrm{L}}{ }^{-} m u_{\mathrm{R}}{ }^{+} \quad \mathrm{J}_{\mathrm{z}}-1 \quad->+1$
- $\mathrm{e}_{\mathrm{R}}{ }^{-} \mathrm{e}_{\mathrm{L}}{ }^{+}->\mathrm{mu}_{\mathrm{R}}{ }^{-} \mathrm{mu}_{\mathrm{L}}{ }^{+} \quad \mathrm{J}_{\mathrm{z}}-1 \quad->-1$
- Next look at the rotation matrices:
$d_{11}^{1}(\theta)=\frac{1}{2}(1+\cos \theta) \approx \frac{-u}{s}$
$d_{-1-1}^{1}(\theta)=\frac{1}{2}(1+\cos \theta) \approx \frac{-u}{s}$
$d_{-11}^{1}(\theta)=\frac{1}{2}(1-\cos \theta) \approx \frac{-t}{s}$
$d_{1-1}^{1}(\theta)=\frac{1}{2}(1-\cos \theta) \approx \frac{-t}{s}$
Cross products cancel in Spin average:

$$
\overline{|M|^{2}} \propto\left(1+\cos ^{2} \theta\right)
$$

$d^{J}{ }_{1-1}$
Initial J_{z} final J_{z}

Conclusion on relativistic limit

- Dependence on scattering angle is given entirely by angular momentum conservation !!!
- This is a generic feature for any vector or axialvector current.
- We will thus see the exact same thing also for V-A coupling of Electroweak interactions.

Propagators

Spinless: i

$$
\overline{p^{2}-m^{2}}
$$

Massive Vector Bosons:

See H\&M Ch.6.10ff for more details.

$$
\frac{i\left(-g^{\mu v}+p^{\mu} p^{v} / M^{2}\right)}{p^{2}-M^{2}}
$$

Spin 1/2, e.g. electron:
$\frac{i \sum_{s} \bar{u} u}{p^{2}-m^{2}}=\frac{i\left(p^{\mu} \gamma_{\mu}+m\right)}{p^{2}-m^{2}}$
Photon: $\frac{-i g_{\mu \nu}}{q^{2}}$

Compton Scattering: e- gamma -> e- gamma

Compton Scattering: e- gamma -> e- gamma

Where we neglect the electron mass, and refer to H\&M Chapter 6.14 for details.

Pair annihilation via crossing

- Like we've done before: s <-> t

$$
\begin{aligned}
& \qquad \overline{|M|^{2}}=\overline{\left|M_{1}+M_{2}\right|^{2}}=2 e^{4}\left(\frac{u}{t}+\frac{t}{u}\right) \\
& \mathrm{t}=-2 \mathrm{kk}^{\prime}=-2 \mathrm{pp} \\
& \mathrm{u}=-2 \mathrm{kp} \\
& \mathrm{k}^{\prime}=-2 \mathrm{k} \mathrm{k}^{\prime} \quad \text { Ignoring the electron mass. }
\end{aligned}
$$

First step towards chapter 8

- In chapter 8 we investigate the structure of hadrons by scattering electrons of charge distributions that are at rest in the lab.
- As an initial start to formalism review e- muscattering with the initial muon at rest.
- Let's start with what we got last time, neglecting only terms with electron mass:

$$
\overline{|M|^{2}}=\frac{8 e^{4}}{t^{2}}\left[\left(k^{\prime} p^{\prime}\right)(k p)+\left(k^{\prime} p\right)\left(k p^{\prime}\right)-M^{2} k k^{\prime}\right]
$$

$$
\overline{|M|^{2}}=\frac{8 e^{4}}{t^{2}}\left[\left(k^{\prime} p^{\prime}\right)(k p)+\left(k^{\prime} p\right)\left(k p^{\prime}\right)-M^{2} k k^{\prime}\right]
$$

As we will want frame for which $p=(M, 0)$, it's worth rewriting this using $\mathrm{q}=\mathrm{k}-\mathrm{k}$.
As we won't care for the muon recoil p^{\prime}, we eliminate p^{\prime} via:
$\mathrm{p}^{\prime}=\mathrm{k}-\mathrm{k}^{\prime}+\mathrm{p}$.
As we ignore the electron mass, we'll drop terms with k^{2}, or $k^{\prime 2}$, and simplify $q^{2}=-2 k k^{\prime}$.
We then get:

$$
\overline{|M|^{2}}=\frac{8 e^{4}}{q^{4}}\left[-\frac{1}{2} q^{2}\left(k p-k^{\prime} p\right)+2\left(k^{\prime} p\right)(k p)+\frac{1}{2} M^{2} q^{2}\right]
$$

I'll let you confirm this for yourself.

$$
\overline{|M|^{2}}=\frac{8 e^{4}}{q^{4}}\left[-\frac{1}{2} q^{2}\left(k p-k^{\prime} p\right)+2\left(k^{\prime} p\right)(k p)+\frac{1}{2} M^{2} q^{2}\right]
$$

Now got to muon restframe: $p=(M, 0)$ This means $\mathrm{kp}=\mathrm{EM}$ and $\mathrm{k} \mathrm{p}=\mathrm{E}^{\prime} \mathrm{M}$.

$$
\begin{aligned}
& \left\lvert\, \overline{\left.M\right|^{2}}=\frac{8 e^{4}}{q^{4}}\left[-\frac{1}{2} q^{2} M\left(E-E^{\prime}\right)+2 E E^{\prime} M^{2}+\frac{1}{2} M^{2} q^{2}\right]\right. \\
& =\frac{8 e^{4}}{q^{4}} 2 E E^{\prime} M^{2}\left[-\frac{q^{2}}{2 M^{2}} \frac{M\left(E-E^{\prime}\right)}{2 E E^{\prime}}+1+\frac{q^{2}}{4 E E^{\prime}}\right] \\
& =\frac{8 e^{4}}{q^{4}} 2 E E^{\prime} M^{2}\left[-\frac{q^{2}}{2 M^{2}} \frac{M\left(E-E^{\prime}\right)}{2 E E^{\prime}}+1-\sin ^{2} \frac{\theta}{2}\right] \\
& =\frac{8 e^{4}}{q^{4}} 2 E E^{\prime} M^{2}\left[-\frac{q^{2}}{2 M^{2}} \sin ^{2} \frac{\theta}{2}+\cos ^{2} \frac{\theta}{2}\right]
\end{aligned} \mathrm{q}^{2}=-2 \mathrm{kk}=-4 E E^{\prime} \sin ^{2}=-2 M\left(E-E^{\prime}\right)
$$

Aside on scattering angle

$-2 k k^{\prime}=-2\left(E E^{\prime}-k k^{\prime} \cos \theta\right)=-2 E E^{\prime}(1-\cos \theta)=-4 E E^{\prime} \sin ^{2} \theta / 2$

Recall: We eliminated any need to know p^{\prime} in favor of a measurement of the labframe angle between k and k '

Aside

$$
\begin{aligned}
& q^{2}=\left(k-k^{\prime}\right)^{2}=\left(p-p^{\prime}\right)^{2} \\
& q^{2}=-2 k k^{\prime}=-2 p p^{\prime}
\end{aligned}
$$

However, we already know that $\mathrm{p}^{\prime}=\mathrm{q}+\mathrm{p}$, and thus:

$$
q^{2}=-2 p(q+p)=-2 p q+2 m^{2}=-2 p q
$$

Always neglecting terms proportional to the electron mass.

$$
\overline{|M|^{2}}=\frac{8 e^{4}}{q^{4}} 2 E E^{\prime} M^{2}\left[\cos ^{2} \frac{\theta}{2}-\frac{q^{2}}{2 M^{2}} \sin ^{2} \frac{\theta}{2}\right]
$$

Now recall how to turn this into d σ in the labframe:

$$
\begin{aligned}
& d \sigma=\frac{1}{64 \pi^{2}} \frac{\delta^{(4)}\left(p_{D}+p_{C}-p_{A}-p_{B}\right)}{V_{A} E_{A} E_{B}}|M|^{2} \frac{d p_{c}^{3} d p_{D}^{3}}{E_{c} E_{D}} \\
& =1 \text { (slide } 15 \text { lecture 10) } \\
& d \sigma=\frac{1}{64 \pi^{2}} \frac{\delta^{(4)}\left(p+k-p^{\prime}-k^{\prime}\right)}{E M}|M|^{2} \frac{d^{3} k^{\prime} d^{3} p^{\prime}}{E^{\prime} p_{0}^{\prime}} \\
& =\frac{|M|^{2}}{4 \pi^{2}} \frac{\delta^{(4)}\left(p+k-p^{\prime}-k^{\prime}\right)}{4 E M} \frac{E^{\prime} d E^{\prime} d \Omega}{2} \frac{d^{3} p^{\prime}}{2 p_{0}^{\prime}}
\end{aligned}
$$

$$
d \sigma=\frac{|M|^{2}}{4 \pi^{2}} \frac{\delta^{(4)}\left(p+k-p^{\prime}-k^{\prime}\right)}{4 E M} \frac{E^{\prime} d^{3} E^{\prime} d \Omega}{2} \frac{d^{3} p^{\prime}}{2 p_{0}^{\prime}}
$$

What do we do about this?

Recall, we are heading towards collissions between electron and hadron. The hadronic mess in the final state is not something we care to integrate over !!!

Exercise 6.7 in H\&M:

$$
\int \delta^{(4)}\left(p+q-p^{\prime}\right) \frac{d^{3} p^{\prime}}{2 p_{0}^{\prime}}=\frac{1}{2 M} \delta\left(E-E^{\prime}+\frac{q^{2}}{2 M}\right) \mathrm{k}^{\prime}
$$

Putting it all together:

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
\frac{d \sigma}{d E^{\prime} d \Omega}=\frac{|M|^{2}}{4 \pi^{2}} \frac{E^{\prime}}{8 E M} \int \delta^{(4)}\left(p+q-p^{\prime}\right) \frac{d^{3} p^{\prime}}{2 p_{0}^{\prime}} \\
\left\lvert\, \overline{|M|^{2}}=\frac{8 e^{4}}{q^{4}} 2 E E^{\prime} M^{2}\left[\cos ^{2} \frac{\theta}{2}-\frac{q^{2}}{2 M^{2}} \sin ^{2} \frac{\theta}{2}\right]\right.
\end{array}\right. \\
\qquad \frac{d \sigma}{d E^{\prime} d \Omega}=4 \alpha^{2} \frac{2 M E^{\prime 2}}{q^{4}}[\ldots] \int \delta^{(4)}\left(p+q-p^{\prime}\right) \frac{d^{3} p^{\prime}}{2 p_{0}^{\prime}}
\end{array}\right\} \begin{aligned}
& \frac{d \sigma}{d E^{\prime} d \Omega}=\frac{4 E^{\prime 2} \alpha^{2}}{q^{4}}\left[\cos ^{2} \frac{\theta}{2}-\frac{q^{2}}{2 M^{2}} \sin ^{2} \frac{\theta}{2}\right] \delta\left(E-E^{\prime}+\frac{q^{2}}{2 M}\right)
\end{aligned}
$$

Now we perform the E' integration by noticing:

$$
\begin{aligned}
& \frac{1}{2 M} \delta\left(E-E^{\prime}+\frac{q^{2}}{2 M}\right)=\frac{\delta\left(E^{\prime}-E / A\right)}{2 M A} \\
& A \equiv 1+\frac{2 E}{M} \sin ^{2} \frac{\theta}{2} \quad \text { Exercise 6.7 H\&M }
\end{aligned}
$$

We then finally get:

$$
\left.\frac{d \sigma}{d \Omega}\right|_{l a b}=\frac{4 \alpha^{2}}{4 E^{2} \sin ^{4} \frac{\theta}{2}} \frac{E^{\prime}}{E}\left[\cos ^{2} \frac{\theta}{2}-\frac{q^{2}}{2 M^{2}} \sin ^{2} \frac{\theta}{2}\right]
$$

This is completely independent of the target's final state !!!

Experimental importance

- You measure only initial and final state electron.
- You have a prediction for electron scattering off a spin $1 / 2$ point particle with charge $=-1$.
- Any deviation between measurement and prediction indicates substructure of your supposed point particle !!!
- Next: How does one describe scattering off a charge distribution, rather than a point particle?
=> Beginning of chapter 8 !

Probing the Structure of Hadrons with electron scattering

- All you measure is the incoming and outgoing electron 3 momentum.
- If you had a static target then you can show that this gives you directly the fourier transform of the charge distribution of your target:

Once the target is not static,
we're best of using e-mu

$$
\begin{aligned}
& \frac{d \sigma}{d \Omega}=\left.\frac{d \sigma}{d \Omega}\right|_{p o \text { int }} \bullet|F(q)|^{2} \\
& F(q)=\int \rho(x) e^{i q x} d^{3} x
\end{aligned}
$$ scattering as our starting point.

e-proton vs e-muon scattering

- What's different?
- If proton was a spin $1 / 2$ point particle with magnetic moment e/2M then all one needs to do is plug in the proton mass instead of muon mass into:

$$
\left.\frac{d \sigma}{d \Omega}\right|_{l a b}=\frac{4 \alpha^{2}}{4 E^{2} \sin ^{4} \frac{\theta}{2}} \frac{E^{\prime}}{E}\left[\cos ^{2} \frac{\theta}{2}-\frac{q^{2}}{2 M^{2}} \sin ^{2} \frac{\theta}{2}\right]
$$

- However, magnetic moment differs, and we don't have a point particle !!!

e-proton vs e-muon scattering

- Let's go back to where we started:
- What's the transition current for the proton?

$$
\begin{array}{lr}
J^{\mu}=-e \bar{u}\left(k^{\prime}\right) \gamma^{u} u(k) e^{i\left(k^{\prime}-k\right) x} & \text { electron } \\
J^{\mu}=-e \bar{u}\left(p^{\prime}\right)[? ? ?] u(p) e^{i\left(p^{\prime}-p\right) x} & \text { proton }
\end{array}
$$

We need to find the most general parametrization for [???], and then measure its parameters.

What is [???]

- This is a two part problem:
- What are the allowed 4 -vectors in the current?
- What are the independent scalars that the dynamics can depend on ?
- Let's answer the second first:

$$
M^{2}=p^{\prime 2}=(p+q)^{2}=M^{2}+2 p q+q^{2}
$$

- I can thus pick either $p q$ or q^{2} as my scalar variable to express dependence on kinematics.

What are the 4-vectors allowed?

- Most general form of the current:

$$
\begin{aligned}
& J^{\mu}=-e \bar{u}\left(p^{\prime}\right)[? ? ?] u(p) e^{i\left(p^{\prime}-p\right) x} \\
& {[? ? ?]=\gamma^{\mu} K_{1}+i \sigma^{\mu \nu}\left(p^{\prime}-p\right)_{v} K_{2}+i \sigma^{\mu \nu}\left(p^{\prime}+p\right)_{v} K_{3}+} \\
& +\left(p^{\prime}-p\right)^{\mu} K_{4}+\left(p^{\prime}+p\right)^{\mu} K_{5}
\end{aligned}
$$

- Gordon Decomposition of the current: any term with ($p+p^{\prime}$) can be expressed as linear sum of components with γ^{μ} and $\sigma^{\mu \nu}\left(p^{\prime}-p\right)$.
- K_{4} must be zero because of current conservation.

Gordon Decomposition

- Exercise 6.1 in H\&M:

$$
\bar{u}\left(p^{\prime}\right) \gamma^{u} u(p)=\bar{u}\left(p^{\prime}\right)\left[\left(p^{\prime}+p\right)+i \sigma^{\mu v}\left(p^{\prime}-p\right)_{v}\right] u(p)
$$

- I leave it as a future homework to show this.

Current Conservation

$q_{\mu} J^{\mu}=0$
$0=q_{\mu} \bar{u}\left(p^{\prime}\right)\left[\gamma^{\mu} K_{1}+i \sigma^{\mu \nu}\left(p^{\prime}-p\right)_{v} K_{2}+\left(p^{\prime}+p\right)^{\mu} K_{5}\right] u(p)$
$q_{\mu} \gamma^{\mu} \psi=m \psi \approx 0 \quad$ because of relativistic limit.
$q_{\mu} \sigma^{\mu v} q_{v}=0$ because sigma is anti-symmetric.
As a result, K_{5} must be zero.

$$
J^{\mu}=-e \bar{u}\left(p^{\prime}\right)\left\lfloor\gamma^{u} F_{1}\left(q^{2}\right)+i \sigma^{\mu v} q_{v} \frac{\kappa}{2 M} F_{2}\left(q^{2}\right)\right\rfloor u(p) e^{i\left(p^{\prime}-p\right) x}
$$

Proton Current

$$
J^{\mu}=-e \bar{u}\left(p^{\prime}\right)\left[\gamma^{\mu} F_{1}\left(q^{2}\right)+i \sigma^{\mu v} q_{v} \frac{\kappa}{2 M} F_{2}\left(q^{2}\right)\right] u(p) e^{i\left(p^{\prime}-p\right) x}
$$

We determine F1, F2, and kappa experimentally, with the constraint that $F 1(0)=1=F 2(0)$ in order for kappa to have the meaning of the anomalous magnetic moment.

The two form factors F1 and F2 parametrize our ignorance regarding the detailed structure of the proton.

