Physics 214 UCSD/225a UCSB

Lecture 11

- Finish Halzen \& Martin Chapter 4
- origin of the propagator
- Halzen \& Martin Chapter 5
- Continue Review of Dirac Equation
- Halzen \& Martin Chapter 6
- start with it if time permits

Origin of propagator

- When we discussed perturbation theory a few lectures ago, we did what some call "old fashioned perturbation theory".
- It was not covariant
- We required momentum conservation at vertex but not Energy conservation
- At second order, we need to consider time ordered products.
- When you do this "more modern"
- Fully covariant
- 4-momentum is conserved at each vertex
- However, "propagating particles" are off-shell
- This is what you'll learn in QFT!

Spinless massive propagator

H\&M has a more detailed discussion for how to go from a time ordered 2nd order perturbation theory to get the propagator. Here, we simply state the result:

$$
\frac{1}{\left(p_{A}+p_{B}\right)^{2}-m^{2}}=\frac{1}{p^{2}-m^{2}}
$$

For more details see Halzen \& Martin

H\&M Chapter 5 Review of Dirac Equation

- Dirac's Quandery
- Notation Reminder
- Dirac Equation for free particle
- Mostly an exercise in notation
- Define currents
- Make a complete list of all possible currents
- Aside on Helicity Operator
- Solutions to free particle Dirac equation are eigenstates of Helicity Operator
- Aside on "handedness"

Dirac's Quandery

- Can there be a formalism that allows wave functions that satisfy the linear and quadratic equations simultaneously:

$$
\begin{aligned}
& H \psi=(\vec{\alpha} \vec{p}+\beta m) \psi \\
& H^{2} \psi=\left(P^{2}+m^{2}\right) \psi
\end{aligned}
$$

- If such a thing existed then the linear equation would provide us with energy eigenvalues that automatically satisfy the relativistic energy momentum relationship

Dirac's Quandery (2)

- Such a thing does indeed exist:
- Wave function is a 4 component object

$$
\begin{aligned}
& \alpha_{i}=\left(\begin{array}{ll}
& \sigma_{i} \\
\sigma_{i} &
\end{array}\right) \begin{array}{l}
\alpha \text { is thus a 3-vector of } 4 \times 4 \text { matrices } \\
\text { with special commutator relationships } \\
\text { like the Pauli matrices. } \\
\text { While } \beta \text { is a diagonal } 4 \times 4 \text { matrix as sh }
\end{array} \\
& \beta=\left(\begin{array}{cc}
I & \\
& -I
\end{array}\right) \quad \\
& \sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right): \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right): I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

The rest is history

In the following I provide a very limited reminder of notation and a few facts.
If these things don't sound familiar, then I encourage you to work through ch. 5 carefully.

Notation Reminder (1)

- Sigma Matrices:

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

- Gamma Matrices:

$$
\gamma^{0}=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right) ; \gamma^{j=1,2,3}=\left(\begin{array}{cc}
0 & \sigma_{j=1,2,3} \\
-\sigma_{j=1,2,3} & 0
\end{array}\right) ; \gamma^{5}=\left(\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right)
$$

- State Vectors:

$$
\psi=(\cdot) \cdot \bar{\psi} \equiv \psi^{T *} \gamma^{0}=(\ldots .)
$$

Notation Reminder (2)

- Obvious statements about gamma matrices

$$
\begin{aligned}
& \gamma^{(j=0,2,5) T}=\gamma^{(j=0,2,5)} ; \quad \gamma^{(j=1,3) T}=-\gamma^{(j=1,3)} \\
& \gamma^{(j=0,5) T^{*}}=\gamma^{(j=0,5)} ; \quad \gamma^{(j=1,2,3) T^{*}}=-\gamma^{(j=1,2,3)}
\end{aligned}
$$

- Probability density

$$
\bar{\psi} \equiv \psi^{T^{*}} \gamma^{0}
$$

$$
\bar{\psi} \gamma^{0} \psi=\psi^{T^{*}} \psi=\# \geq 0
$$

- Scalar product of gamma matrix and 4-vector

$$
A \equiv \gamma^{\mu} A_{\mu}=\gamma^{0} A_{0}-\gamma^{1} A_{1}-\gamma^{2} A_{2}-\gamma^{3} A_{3} \quad \begin{aligned}
& \text { Is again a } \\
& \text { 4-vector }
\end{aligned}
$$

Dirac Equation of free particle

$\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0$
Ansatz:

$$
\psi=e^{-i p x} u(p)
$$

$i \partial_{\mu} \bar{\psi} \gamma^{\mu}+m \bar{\psi}=0$
$\left.\begin{array}{l}\text { Explore this in restrame of particle: } \\ \qquad \psi_{+1 / 2}=\sqrt{2 m} e^{-i m m t} \\ 0 \\ 0 \\ 0\end{array}\right): \psi_{-1 / 2}=\sqrt{2 m} e^{-i m m}\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right) ;$
Normalization chosen to describe 2E particles, as usual.

Particle vs antiparticle in restframe

$$
\psi_{+/ 2}=\sqrt{2 m e}\left(\begin{array}{l}
-i m \\
0 \\
0 \\
0 \\
0
\end{array}\right) \psi_{-1 / 2}=\sqrt{2 m} e^{-i m m}\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) ;
$$

particle

Recall, particle -> antiparticle means E,p -> -E,-p Let's take a look at Energy Eigenvalues:

$$
H u=(\vec{\alpha} \vec{p}+\beta m) u=E u
$$

$\left(\begin{array}{cc}m I & 0 \\ 0 & -m I\end{array}\right) u=E u \longleftarrow \begin{gathered}\text { for } p=0 \text { we get this equation } \\ \text { to satisfy by the energy eigenvectors }\end{gathered}$
It is thus obvious that 2 of the solutions have $E<0$, and are the lower two components of the 4-component object u.

Particle \& Anti-particle

$$
\binom{1}{0} \quad\binom{0}{1} \quad \text { Positive energy solution }
$$

$$
\psi_{+1 / 2}=\sqrt{2 m} e^{-i m t}\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right): \psi_{-1 / 2}=\sqrt{2 m} e^{-i m m}\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) \text { : }
$$

Not in restframe this becomes:

$$
\begin{aligned}
& H u=(\vec{\alpha} \vec{p}+\beta m) u=E u \\
& H u=\left(\begin{array}{cc}
m & \vec{\sigma} \vec{p} \\
\vec{\sigma} \vec{p} & -m
\end{array}\right) u=E u
\end{aligned}
$$

The lower 2 components are thus coupled to the upper 2 via this matrix equation, leading to free particle and antiparticle solutions as follows.

(Anti-)Particle not in restframe

$$
\begin{aligned}
& \psi_{+1 / 2}=N e^{-i p x}\left(\begin{array}{c}
1 \\
0 \\
\frac{\vec{\sigma} \vec{p}}{E+m}\binom{1}{0}
\end{array}\right): \psi_{-1 / 2}=N e^{-i p x}\binom{0}{\frac{\vec{\sigma} \vec{p}}{1}\left(\begin{array}{l}
0 \\
E+m \\
1
\end{array}\right)} \\
& \psi_{+1 / 2}=N e^{+i p x}\binom{\overrightarrow{-\vec{\sigma} \vec{p}}\left(\begin{array}{l}
1 \\
|E|+m \\
1 \\
0
\end{array}\right)}{0} \psi_{-1 / 2}=N e^{+i p x}\left(\begin{array}{c}
\frac{\vec{\sigma} \vec{p}}{|E|+m}\binom{0}{1} \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

I suggest you read up on this in H\&M chapter 5 if you're not completely comfortable with it.

What we learned so far:

- Dirac Equation has 4 solutions for the same p :
- Two with E>0
- Two with E<0
- The $\mathrm{E}<0$ solutions describe anti-particles.
- The additional 2-fold ambiguity describes spin +-1/2.
- You will show this explicitly in Exercise H\&M 5.4, which is part of HW next week.
- We thus have a formalism to describe all the fundamental spin 1/2 particles in nature.

Helicity Operator

- The helicity operator commutes with both H and P.
- Helicity is thus conserved for the free spin $1 / 2$ particle.
$\frac{1}{2}\left(\begin{array}{cc}\vec{\sigma} \hat{p} & 0 \\ 0 & \vec{\sigma} \hat{p}\end{array}\right)$
The unit vector here is the axis with regard to which we define the helicity. For ($0,0,1$), i.e. the Z-axis, we get the desired $+-1 / 2$ eigenvalues.

$$
\sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Dirac Equation for particle and anti-particle spinors

It's sometimes notationally convenient to write the antiparticle spinor solution (i.e. the -p,-E) as an explicit Antiparticle spinor that satisfies a modified dirac equation:
$\left(\gamma^{\mu} p_{\mu}-m\right) u=0 \quad$ particle
$\left(\gamma^{\mu} p_{\mu}+m\right) v=0 \quad$ antiparticle
The v-spinor then has positive energy. We won't be using v-spinors in this course.

Antiparticles

- We will stick to the antiparticle description we introduced in chapter 4:

Initial state $\mathrm{e}^{+} \mathrm{e}^{-}$is an initial state
$e^{-} e^{-}$with the positron being an electron going in the "wrong direction",
i.e. "backwards in time".

Some more reflections on γ^{μ}

- There are exactly 5 distinct γ matrices:

$$
\gamma^{0}=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right): \gamma^{j=1,2,3}=\left(\begin{array}{cc}
0 & \sigma_{j=1,2,3} \\
-\sigma_{j=1,2,3} & 0
\end{array}\right) \gamma^{5}=\left(\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right)
$$

- Where $\gamma^{5} \equiv i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$
- Every one of them multiplied with itself gives the unit matrix.
- As a result, any product of 5 of them can be expressed as a product of 3 of them.

Currents

- Any bi-linear quantity can be a current as long as it has the most general form:

$$
\bar{\psi}(4 x 4) \psi
$$

- By finding all possible forms of this type, using the gamma-matrices as a guide, we can form all possible currents that can be within this formalism.

The possible currents

$\psi \psi$
$\bar{\psi} \gamma^{5} \psi$
$\bar{\psi} \gamma^{\mu} \psi$
$\bar{\psi} \gamma^{5} \gamma^{\mu} \psi$
scalar
pseudo-scalar
vector
pseudo-vector or "axial-vector"

$$
\bar{\psi} \frac{i}{2}\left(\gamma^{u} \gamma^{\nu}-\gamma^{v} \gamma^{u}\right) \psi
$$

tensor

Chapter 6

Electrodynamics of Spin-1/2 particles.

Spinless

vs \quad Spin $1 / 2$

$$
\begin{array}{cl}
\phi(t, \vec{x})=N e^{-i p_{\mu} x^{\mu}} & \psi(t, \vec{x})=u(p) e^{-i p_{\mu} x^{\mu}} \\
J_{\mu}=-i e\left(\phi^{*}\left(\partial_{\mu} \phi\right)-\left(\partial_{\mu} \phi^{*}\right) \phi\right) & J^{\mu}=-e \bar{\psi} \gamma^{\mu} \psi \\
T_{f i}=-i \int J_{f i}^{\mu} A_{\mu} d^{4} x+O\left(e^{2}\right) & T_{f i}=-i \int J_{f i}^{\mu} A_{\mu} d^{4} x+O\left(e^{2}\right)
\end{array}
$$

We basically make a substitution of the vertex factor:

$$
\left(p_{f}+p_{i}\right)_{\mu} \rightarrow \bar{u}_{f} \gamma_{\mu} u_{i}
$$

And all else in calculating $|M|^{2}$ remains the same.

Example: $\mathrm{e}^{-} \mathrm{e}^{-}$scattering

For Spinless (i.e. bosons) we showed:

$$
M=-e^{2}\left(\frac{\left(p_{A}+p_{C}\right)^{\mu}\left(p_{B}+p_{D}\right)_{\mu}}{\left(p_{A}-p_{C}\right)^{2}}+\frac{\left(p_{A}+p_{D}\right)^{\mu}\left(p_{B}+p_{C}\right)_{\mu}}{\left(p_{A}-p_{D}\right)^{2}}\right)
$$

For Spin $1 / 2$ we thus get:

$$
\begin{aligned}
& M=-e^{2}\left(\frac{\left(\bar{u}_{c} \gamma^{\mu} u_{A}\right)\left(\bar{u}_{D} \gamma_{\mu} u_{B}\right)}{\left(p_{A}-p_{C}\right)^{2}}-\frac{\left(\bar{u}_{D} \gamma^{\mu} u_{A}\right)\left(\bar{u}_{C} \gamma_{\mu} u_{B}\right)}{\left(p_{A}-p_{D}\right)^{2}}\right) \\
& \text { Minus sign comes from fermion exchange !!! }
\end{aligned}
$$

Spin Averaging

- The M from previous page includes spinors in initial and final state.
- In many experimental situations, in particular in hadron collissions, you neither fix initial nor final state spins.
- We thus need to form a spin averaged amplitude squared before we can compare with experiment:

$$
\overline{|M|^{2}}=\frac{1}{\left(2 s_{A}+1\right)\left(2 s_{B}+1\right)} \sum_{\text {spin }}|M|^{2}=\frac{1}{4} \sum_{\text {spin }}|M|^{2}
$$

Spin Averaging in non-relativistic limit

- Incoming e^{-}:
- Outgoing e^{-}:

$$
\bar{u}^{(s-1 / 2)}=\sqrt{2 m}\left(\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right)
$$

$$
\bar{u}_{f} \gamma_{\mu} u_{i}=\left\{\begin{array}{l}
2 m \text { if }(\mu=0) \wedge s_{i}=s_{f}
\end{array}\right.
$$

0 otherwise

Invariant variables s,t,u

Example: e-e--> e-e-

- $s=\left(p_{A}+p_{B}\right)^{2}$
- $=4\left(k^{2}+m^{2}\right)$
- $t=\left(p_{A}-p_{C}\right)^{2}$
- $=-2 k^{2}(1-\cos \theta)$

- $u=\left(p_{A}-p_{D}\right)^{2}$
- $=-2 k^{2}(1+\cos \theta)$
$\mathrm{k}=\left|\mathrm{k}_{\mathrm{i}}\right|=\left|\mathrm{k}_{\mathrm{f}}\right| \quad \mathrm{m}=\mathrm{m}_{\mathrm{e}} \quad \theta=$ scattering angle, all in com frame.

Invariant variables s,t,u

$$
\text { - } \begin{aligned}
\mathrm{s} & =\left(\mathrm{p}_{\mathrm{A}}+\mathrm{p}_{\mathrm{B}}\right)^{2} \\
& =4\left(k^{2}+\mathrm{m}^{2}\right)
\end{aligned}
$$

B, D are antiparticles!
p_{B} thus "negative", leading to the + in $\left(p_{A}+p_{B}\right)$.
$\mathrm{k}=\left|\mathrm{k}_{\mathrm{i}}\right|=\left|\mathrm{k}_{\mathrm{f}}\right| \quad \mathrm{m}=\mathrm{m}_{\mathrm{e}} \quad \theta$ = scattering angle, all in com frame.

M for Different spin combos

$$
\begin{aligned}
& M=-e^{2}\left(\frac{\left(\bar{u}_{c} \gamma^{\mu} u_{A}\right)\left(\bar{u}_{D} \gamma_{\mu} u_{B}\right)}{t}-\frac{\left(\bar{u}_{D} \gamma^{\mu} u_{A}\right)\left(\bar{u}_{C} \gamma_{\mu} u_{B}\right)}{u}\right) \\
& {\left[\left(\bar{u}_{c} \gamma^{\mu} u_{A}\right)\left(\bar{u}_{D} \gamma_{\mu} u_{B}\right)\right]_{\downarrow \uparrow \rightarrow \downarrow \uparrow}=4 m^{2}} \\
& {\left[\left(\bar{u}_{D} \gamma^{\mu} u_{A}\right)\left(\bar{u}_{C} \gamma_{\mu} u_{B}\right)\right]_{\uparrow \downarrow \rightarrow \downarrow \uparrow}=4 m^{2}} \\
& {\left[\left(\bar{u}_{c} \gamma^{\mu} u_{A}\right)\left(\bar{u}_{D} \gamma_{\mu} u_{B}\right)\right]_{\uparrow \downarrow \rightarrow \downarrow \uparrow}=0}
\end{aligned}
$$

etc.

$$
\overline{|M|^{2}}=\frac{1}{4}\left(4 m^{2} e^{2}\right)^{2} 2\left\lfloor\left(\frac{1}{t}-\frac{1}{u}\right)^{2}+\frac{1}{t^{2}}+\frac{1}{u^{2}}\right\rfloor
$$

M for Different spin combos

$$
M=-e^{2}\left(\frac{\left(\bar{u}_{c} \gamma^{\mu} u_{A}\right)\left(\bar{u}_{D} \gamma_{\mu} u_{B}\right)}{t}-\frac{\left(\bar{u}_{D} \gamma^{\mu} u_{A}\right)\left(\bar{u}_{C} \gamma_{\mu} u_{B}\right)}{u}\right)
$$

ABCD
$\downarrow \uparrow \downarrow \uparrow \quad \frac{1}{t^{2}}$
ABCD
$\downarrow \uparrow \uparrow \downarrow \frac{1}{u^{2}}$
ABCD
$\downarrow \downarrow \downarrow \downarrow$$\left(\frac{1}{t}-\frac{1}{u}\right)^{2}$

