Physics 214 UCSD/225a UCSB

Lecture 10

- Halzen \& Martin Chapter 4
- Electron-muon scattering
- Cross section definition
- Decay rate definition
- treatment of identical particles => symmetrizing
- crossing

Electrodynamics of Spinless particles

- We replace p^{μ} with $p^{\mu}+e A^{\mu}$ in classical EM for a particle of charge -e moving in an EM potential A^{μ}
- In QM, this translates into: $i \partial^{\mu} \rightarrow i \partial^{\mu}+e A^{\mu}$
- And thus to the modified Klein Gordon Equation:

$$
\begin{aligned}
& \left(\partial^{\mu} \partial_{\mu}+m^{2}\right) \phi=-V \phi \\
& V=-i e\left(\partial^{\mu} A_{\mu}+A^{\mu} \partial_{\mu}\right)-e^{2} A^{2}
\end{aligned}
$$

\checkmark here is the potential energy of the perturbation.

Two-by-two process Overview

- Start with general discussion of how to relate number of scatters in $A B$-> CD scattering to "beam \& target independent" cross section in terms of W_{fi}.
- Calculate W_{fi} for electron-muon scattering.
- Calculate cross section from that
- Show relationship between cross section and "invariant amplitude" (or "Matrix Element").

$$
\begin{array}{lc}
j^{\mu}=(\rho, \vec{j}) & \text { Reminder from last lecture } \\
\partial^{\mu} j_{\mu}=0 & \\
\rho=i\left(\phi^{*} \frac{\partial \phi}{\partial t}-\phi \frac{\partial \phi^{*}}{\partial^{*}}\right) & \phi(t, \vec{x})=N e^{-i p_{\mu} x^{\mu}} \\
J=-i\left(\phi^{*} \nabla \phi-\phi \nabla \phi^{*}\right) &
\end{array}
$$

4-vector current for the plane wave solutions we find:

$$
\left.\begin{array}{l}
\rho=2 E|N|^{2} \\
\vec{j}=2 \vec{p}|N|^{2}
\end{array}\right\} J^{\mu}=2 p^{\mu}|N|^{2}
$$

The $2|\mathrm{~N}|^{2}$ is an arbitrary normalization

Cross Section for AB -> CD

- Basic ideas:
beam

\# of scatters $=($ flux of beam $) \times(\#$ of particles in target $) \times \sigma$
Cross section $=\sigma=\frac{W_{\mathrm{fi}}}{\text { (initial flux) }}$ (number of final states)
$\mathrm{W}_{\mathrm{fi}}=$ rate per unit time and volume
"Cross section" is independent of characteristics of beam and target !!!

Aside on wave function Normalization

$$
\text { Cross section }=\sigma=\frac{\mathrm{W}_{\mathrm{fi}}}{\text { (initial flux) }} \text { (number of final states) }
$$

$$
\mathrm{W}_{\mathrm{fi}} \propto \mathrm{~N}^{4}
$$

Number of final states/initial flux $\propto \mathrm{N}^{-4}$ Cross section is thus independent of choice of wave function normalization (as it should, of course!)

We will see this explicitly as we walk through this now.

Two-Two process AB -> CD

- Normalize plane wave in constant volume
- This is obviously not covariant, so the volume normalization better cancel out before we're done!

$$
\int_{V} \rho d V=2 E \Rightarrow N=\frac{1}{\sqrt{V}}
$$

- \# of particles per volume $=2 E / V=n$
- \# of particles A crossing area per time $=v_{A} n_{A}$
- $\operatorname{Flux}(\mathrm{AB})=\mathrm{v}_{\mathrm{A}} \mathrm{n}_{\mathrm{A}}\left(2 \mathrm{E}_{\mathrm{B}} / \mathrm{V}\right)=\mathrm{v}_{\mathrm{A}}\left(2 \mathrm{E}_{\mathrm{A}} / \mathrm{V}\right)\left(2 \mathrm{E}_{\mathrm{B}} / \mathrm{V}\right)$

Aside on covariant flux

- Flux $=\mathrm{v}_{\mathrm{A}}\left(2 \mathrm{E}_{\mathrm{A}} / \mathrm{V}\right)\left(2 \mathrm{E}_{\mathrm{B}} / \mathrm{V}\right)$
- Now let target (i.e. B) move collinear with beam (i.e. A): Flux $=\left(v_{A}-v_{B}\right)\left(2 E_{A} / V\right)\left(2 E_{B} / V\right)$
- Now take $v=p / E$: Flux $=\left(E_{B} p_{A}+E_{A} p_{B}\right) 4 / V^{2}$
- Now a little relativistic algebra:

$$
\begin{aligned}
& \left(p_{A}^{U} p_{\mu}^{B}\right)^{2}-m_{A}^{2} m_{B}^{2}=\left(E_{A} E_{B}-\overrightarrow{p_{A}} \overrightarrow{p_{B}}\right)^{2}-m_{A}^{2} m_{B}^{2} \\
& \left(E_{A} E_{B}\right)^{2}=\left(p^{2}+m^{2}\right)_{A}\left(p^{2}+m^{2}\right)_{B} \\
& \overrightarrow{p_{A}}=-\overrightarrow{p_{B}}
\end{aligned}
$$

Putting the pieces together and adding some algebra:

$$
\begin{array}{ll}
\left(p_{A}^{\mu} p_{\mu}^{B}\right)^{2}-m_{A}^{2} m_{B}^{2}=\left(p_{A} E_{B}+p_{B} E_{A}\right)^{2} & \text { Obviously covariant! } \\
F l u x=\frac{4}{V^{2}} \sqrt{\left(p_{A}^{\mu} p_{\mu}^{B}\right)^{2}-m_{A}^{2} m_{B}^{2}} & \begin{array}{l}
\text { (up to } 1 V^{2} \text { normalization factor } \\
\text { that is arbitrary, and will cancel) }
\end{array}
\end{array}
$$

Number of final states/particle

- QM restricts the number of final states that a single particle in a box of volume V can have:
$\frac{\text { Number of final states }}{2 E \text { particles }}=\frac{V d p^{3}}{(2 \pi)^{3} 2 E}$

This follows from Exercise 4.1 in H\&M that you will do as homework exercise.

Putting the pieces together

Cross section $=\sigma=\frac{\mathrm{W}_{\mathrm{fi}}}{\text { (initial flux) }} \quad$ (number of final states)

$$
\sigma=\frac{\mathrm{W}_{\mathrm{fi}}}{\mathrm{v}_{\mathrm{A}}\left(2 \mathrm{E}_{\mathrm{A}} / \mathrm{V}\right)\left(2 \mathrm{E}_{\mathrm{B}} / \mathrm{V}\right)} \frac{V d p_{C}^{3}}{(2 \pi)^{3} 2 E_{C}} \frac{V d p_{D}^{3}}{(2 \pi)^{3} 2 E_{D}}
$$

Next we calculate $W_{f i}$

Electron Muon Scattering

- Use what we did last lecture
- Electron scattering in EM field
- With the field being the one generated by the muon as source.
- Use covariant form of maxwell's equation in Lorentz Gauge to get V , the perturbation potential.
- Plug it into T_{fi}

In form of diagrams

Electron-muon scattering

Electron Muon scattering

$\square^{2} A^{\mu}=J_{(2)}^{\mu}$ Maxwell Equation

Note: \square^{2} eiqx $=-q^{2} e^{i q x}$

$$
\begin{aligned}
& J_{(2)}^{\mu}=-e N_{B} N_{D}\left(p_{D}+p_{B}\right)^{\mu} e^{i\left(p_{D}-p_{B}\right) x} \\
& A^{\mu}=-\frac{1}{q^{2}} J_{(2)}^{\mu}=\mathrm{q}
\end{aligned}
$$

$$
T_{f i}=-i \int J_{\mu}^{(1)} \frac{-1}{q^{2}} J_{(2)}^{\mu} d^{4} x \longleftarrow \text { Note the symmetry: }(1)<->(2)
$$

$$
T_{f i}=-i N_{A} N_{B} N_{C} N_{D}(2 \pi)^{4} \delta^{(4)}\left(p_{D}+p_{C}-p_{A}-p_{B}\right) M
$$

$$
-i M=\left(i e\left(p_{A}+p_{C}\right)^{\mu}\right) \frac{-i g_{\mu v}}{q^{2}}\left(i e\left(p_{D}+p_{B}\right)^{v}\right)
$$

Note the structure: Vertex x propagator x Vertex

Reminder

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)=g_{\mu \nu} \\
& A^{\mu} B_{\mu}=g_{\mu \nu} A^{\mu} B^{\nu}
\end{aligned}
$$

Reminder: $\mathrm{T}_{\mathrm{fi}}->\mathrm{W}_{\mathrm{fi}}$

$$
W_{f i}=\lim _{t \rightarrow \infty} \frac{\left|T_{f i}\right|^{2}}{t} \Rightarrow \frac{\left|T_{f i}\right|^{2}}{t V}
$$

Last time we didn't work in a covariant fashion. This time around, we want to do our integrations across both time and space, i.e. W is a rate per unit time and volume.

$$
T_{f i}=-i N_{A} N_{B} N_{C} N_{D}(2 \pi)^{4} \delta^{(4)}\left(p_{D}+p_{C}-p_{A}-p_{B}\right) M
$$

As last time, we argue that one δ-function remains after $\|^{2}$ while the other gives us a tV to cancel the tV in the denominator.

Putting it all together for $\mathrm{W}_{\text {fi }}$

$$
\begin{aligned}
& N=\frac{1}{\sqrt{V}} \\
& T_{f i}=\frac{-i(2 \pi)^{4}}{V^{2}} \delta^{(4)}\left(p_{D}+p_{C}-p_{A}-p_{B}\right) M
\end{aligned}
$$

$$
W_{f i}=(2 \pi)^{4} \frac{\delta^{(4)}\left(p_{D}+p_{C}-p_{A}-p_{B}\right)}{V^{4}}|M|^{2}
$$

Putting it all together for σ

$$
\sigma=\frac{\mathrm{W}_{\mathrm{fi}}}{\mathrm{v}_{\mathrm{A}}\left(2 \mathrm{E}_{\mathrm{A}} / \mathrm{V}\right)\left(2 \mathrm{E}_{\mathrm{B}} / \mathrm{V}\right)} \frac{V d p_{C}^{3}}{(2 \pi)^{3} 2 E_{C}} \frac{V d p_{D}^{3}}{(2 \pi)^{3} 2 E_{D}}
$$

$$
d \sigma=\frac{V^{2}}{4 v_{A} E_{A} E_{B}}(2 \pi)^{4} \frac{\delta^{(4)}\left(p_{D}+p_{C}-p_{A}-p_{B}\right)}{V^{4}}|M|^{2} \frac{V^{2} d p_{c}^{3} d p_{D}^{3}}{(2 \pi)^{6} 4 E_{c} E_{D}}
$$

$$
d \sigma=\frac{1}{64 \pi^{2}} \frac{\delta^{(4)}\left(p_{D}+p_{C}-p_{A}-p_{B}\right)}{v_{A} E_{A} E_{B}}|M|^{2} \frac{d p_{c}^{3} d p_{D}^{3}}{E_{c} E_{D}}
$$

Aside on outgoing states

- While the incoming states have definite momentum, the outgoing states can have many momenta.
- The cross section is thus a differential cross section in the outgoing momenta.

It is customery to re-express

$$
\begin{gathered}
d \sigma=\frac{|M|^{2}}{4 v_{A} E_{A} E_{B}} \frac{1}{16 \pi^{2}} \delta^{(4)}\left(p_{D}+p_{C}-p_{A}-p_{B}\right) \frac{d p_{c}^{3} d p_{D}^{3}}{E_{c} E_{D}} \\
\text { As: } \quad d \sigma=\frac{|M|^{2}}{F} d Q
\end{gathered}
$$

$\mathrm{F}=$ flux factor: $\quad F=4 \sqrt{\left(p_{A}^{\mu} p_{\mu}^{B}\right)^{2}-m_{A}^{2} m_{B}^{2}}=4 v_{A} E_{A} E_{B}$
$d Q=$ Lorentz invariant phase space:

$$
d Q=\frac{1}{16 \pi^{2}} \delta^{(4)}\left(p_{D}+p_{C}-p_{A}-p_{B}\right) \frac{d p_{c}^{3} d p_{D}^{3}}{E_{c} E_{D}}
$$

In the center-of-mass frame:

$$
\begin{gathered}
F=4 p_{i} \sqrt{\left(E_{A}+E_{B}\right)^{2}}=4 p_{i} \sqrt{s} \\
d Q=\frac{1}{4 \pi^{2}} \frac{p_{f}}{4 \sqrt{s}} d \Omega
\end{gathered}
$$

$$
\left.\frac{d \sigma}{d \Omega}\right|_{c m}=\frac{|M|^{2}}{64 \pi^{2} s} \frac{p_{f}}{p_{i}}
$$

You get to show this as homework!

Electron-electron scattering

- With identical particles in the final state, we obviously need to allow for two contributions to M.
- Option 1:
- C attaches at vertex with A
- D attaches at vertex with B
- Option 2:
- C attaches at vertex with B
- D attaches at vertex with A
- As we can't distinguish C and D, the amplitudes add before M is squared.

$$
\left.M=-e^{2}\left(\frac{\left(p_{A}+p_{C}\right)^{\mu}\left(p_{B}+p_{D}\right)_{\mu}}{\left(p_{D}-p_{B}\right)^{2}}+\frac{\left(p_{A}+p_{D}\right)^{\mu}\left(p_{B}+p_{C}\right)_{\mu}}{\left(p_{C}-p_{B}\right)^{2}}\right)\right)
$$

Electron-positron and crossing

$$
M=-e^{2}\left(\frac{\left(p_{A}+p_{C}\right)^{\mu}\left(-p_{B}-p_{D}\right)_{\mu}}{\left(\left(-p_{D}\right)-\left(-p_{B}\right)\right)^{2}}+\frac{\left(p_{A}-p_{B}\right)^{\mu}\left(-p_{D}+p_{C}\right)_{\mu}}{\left(p_{C}-\left(-p_{D}\right)\right)^{2}}\right)
$$

Electron-positron and crossing

Electron - electron

$$
M=-e^{2}\left(\frac{\left(p_{A}+p_{C}\right)^{\mu}\left(p_{B}+p_{D}\right)_{\mu}}{\left(p_{D}-p_{B}\right)^{2}}+\frac{\left(p_{A}+p_{D}\right)^{\mu}\left(p_{B}+p_{C}\right)_{\mu}}{\left(p_{C}-p_{B}\right)^{2}}\right)
$$

Electron - positron

$$
M=-e^{2}\left(\frac{\left(p_{A}+p_{C}\right)^{\mu}\left(-p_{B}-p_{D}\right)_{\mu}}{\left(\left(-p_{D}\right)-\left(-p_{B}\right)\right)^{2}}+\frac{\left(p_{A}-p_{B}\right)^{\mu}\left(-p_{D}+p_{C}\right)_{\mu}}{\left(p_{C}-\left(-p_{D}\right)\right)^{2}}\right)
$$

Only difference is: $\begin{aligned} & p_{D} \rightarrow-p_{B} \\ & p_{B} \rightarrow-p_{D}\end{aligned}$

Electron-Electron scattering

Electron-Positron scattering

E-mu vs e-e vs e-ebar scattering

Electron - muon

$$
M=-e^{2}\left(\frac{\left(p_{A}+p_{C}\right)^{\mu}\left(p_{B}+p_{D}\right)_{\mu}}{\left(p_{D}-p_{B}\right)^{2}}\right)
$$

Electron - electron

$$
M=-e^{2}\left(\frac{\left(p_{A}+p_{C}\right)^{\mu}\left(p_{B}+p_{D}\right)_{\mu}}{\left(p_{D}-p_{B}\right)^{2}}+\frac{\left(p_{A}+p_{D}\right)^{\mu}\left(p_{B}+p_{C}\right)_{\mu}}{\left(p_{C}-p_{B}\right)^{2}}\right)
$$

Electron - positron

$$
M=-e^{2}\left(\frac{\left(p_{A}+p_{C}\right)^{\mu}\left(-p_{B}-p_{D}\right)_{\mu}}{\left(\left(-p_{D}\right)-\left(-p_{B}\right)\right)^{2}}+\frac{\left(p_{A}-p_{B}\right)^{\mu}\left(-p_{D}+p_{C}\right)_{\mu}}{\left(p_{C}-\left(-p_{D}\right)\right)^{2}}\right)
$$

