
Physics 214 UCSD/225a UCSB
Lecture 10

• Halzen & Martin Chapter 4
–    Electron-muon scattering
–    Cross section definition
–    Decay rate definition
–    treatment of identical particles => symmetrizing
–    crossing



Electrodynamics of Spinless
particles

• We replace pµ with pµ + eAµ in classical EM for
a particle of charge -e moving in an EM
potential Aµ

• In QM, this translates into:
• And thus to the modified Klein Gordon

Equation:
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V here is the potential energy of the perturbation.



Two-by-two process
Overview

• Start with general discussion of how to relate
number of scatters in AB -> CD scattering to
“beam & target independent” cross section in
terms of Wfi  .

• Calculate Wfi for electron-muon scattering.
• Calculate cross section from that
• Show relationship between cross section and

“invariant amplitude” (or “Matrix Element”).



Reminder from last lecture

4-vector current for the plane wave solutions we find:
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Plane wave solutions are:
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The 2|N|2 is an arbitrary normalization



Cross Section for AB -> CD
• Basic ideas:

Cross section =  σ = 
Wfi

(initial flux)
(number of final states)

# of scatters = (flux of beam) x (# of particles in target) x σ

“Cross section” is independent of 
characteristics of beam and target !!!

beam

target

scatter

Wfi = rate per unit time and volume



Aside on wave function
Normalization

Cross section =  σ = 
Wfi

(initial flux)
(number of final states)

Wfi ∝ N4

Number of final states/initial flux ∝ N-4

Cross section is thus independent of 
choice of wave function normalization

We will see this explicitly as we walk through this now.

(as it should, of course!)



Two-Two process AB -> CD
• Normalize plane wave in constant volume

– This is obviously not covariant, so the volume
normalization better cancel out before we’re done!

• # of particles per volume = 2E/V = n
• # of particles A crossing area per time = vA nA
• Flux(AB) = vA nA (2EB/V) = vA (2EA/V) (2EB/V)
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Aside on covariant flux
• Flux = vA (2EA/V) (2EB/V)
• Now let target (i.e. B) move collinear with beam (i.e.

A):  Flux = (vA - vB) (2EA/V) (2EB/V)
• Now take v=p/E: Flux = (EB pA + EA pB) 4/V2

• Now a little relativistic algebra:
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Putting the pieces together and adding some algebra:

Obviously covariant!
(up to 1/V2 normalization factor 
that is arbitrary, and will cancel)



Number of final states/particle
• QM restricts the number of final states that a

single particle in a box of volume V can have:
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This follows from Exercise 4.1 in H&M 
that you will do as homework exercise.



Putting the pieces together

Cross section =  σ = 
Wfi

(initial flux)
(number of final states)

σ = 
Wfi
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Next we calculate Wfi 



Electron Muon Scattering
• Use what we did last lecture

– Electron scattering in EM field
• With the field being the one generated by the

muon as source.
– Use covariant form of maxwell’s equation in

Lorentz Gauge to get V, the perturbation potential.
• Plug it into Tfi



In form of diagrams
e- e-

X field of muon

e- e-

µ- µ-

pA pC

pDpB

Electron-muon scattering



Electron Muon scattering
 2 Aµ = Jµ

(2)  Maxwell Equation
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Note: 2 eiqx = -q2 eiqx

Note the symmetry: (1) <-> (2)

Note the structure: Vertex x propagator x Vertex
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Reminder: Tfi -> Wfi
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Last time we didn’t work in a covariant fashion. This time
around, we want to do our integrations across both time and
space, i.e. W is a rate per unit time and volume.
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As last time, we argue that one δ-function remains after ||2 
while the other gives us a tV to cancel the tV in the denominator.



Putting it all together for Wfi
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Putting it all together for σ

σ = 
Wfi

 

VdpC
3

(2! )
3
2EC

VdpD
3

(2! )
3
2EDvA (2EA/V) (2EB/V)

 

d! =
V
2

4vAEAEB

(2" )
4 #

(4 )
(pD + pC $ pA $ pB )

V
4

M
2 V

2
dpc

3
dpD

3

(2" )
6
4EcED

 

d! =
1

64"
2

#
(4 )
(pD + pC $ pA $ pB )

vAEAEB

M
2 dpc

3
dpD

3

EcED



Aside on outgoing states
• While the incoming states have definite

momentum, the outgoing states can have
many momenta.

• The cross section is thus a differential cross
section in the outgoing momenta.
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pDpB (incoming flux is still not covariant)



It is customery to re-express
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F = flux factor:

dQ = Lorentz invariant phase space:
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In the center-of-mass frame:
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You get to show this as homework !



Electron-electron scattering
• With identical particles in the final state, we obviously

need to allow for two contributions to M.
– Option 1:

• C attaches at vertex with A
• D attaches at vertex with B

– Option 2:
• C attaches at vertex with B
• D attaches at vertex with A

• As we can’t distinguish C and D,the amplitudes add
before M is squared.
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Electron-positron and crossing
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Electron-positron and crossing
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Electron - electron

Electron - positron

Only difference is:
pD → -pB
pB → -pD
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E-mu vs e-e vs e-ebar scattering
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Electron - electron
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Electron - positron

Electron - muon

 

M = !e2
(pA + pC )

µ
(pB + pD )µ

pD ! pB( )
2

" 

# 

$ $ 

% 

& 

' ' 




