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Introduction

Measurements of missing energy are important to detect

• Neutrinos
• Weakly interacting Dark Matter candidates
• BSM physics e.g. SUSY
• escaping gravitons in scenarios with large X’tra dimensions
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The Transverse direction

• No detector can be completely hermetic
• For CMS |η| < 5
⇒ Cannot use total energy balance as a signature for
missing energy

• Transverse momentum (PT ) of a particle with |η| > 5 is

PT ≤ (
7TeV

cosh 5
≈ 94.33GeV )

⇒ Any significant imbalance in the transverse momentum is
indicative of processes of interest

• Also in hard scattering events, the boost of “quark center of
mass frame” is a priori unknown, hence we have a handle
over the transverse direction only
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Notations

Note that when we talk about MET we actually mean the
missing transverse momentum. Thus the notations followed in
this presentation are

• ET represents the magnitude of the missing transverse
momentum vector, while ~ET is the 2D-vector itself.

• Ex, Ey are the x,y components of the ET vector

• Also define ET as the total visible energy in the transverse
direction
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MET determination

• MET is determined from the transverse vector sum over
energy deposits in the calorimeter towers

ET = −
∑

n

(
En

cosh ηn

cos φn +
En

cosh ηn

sinφn)

• Does not use reconstructed particle momentum or
corrected jet energies. Such a calculation therefore gives us
the “raw” ET of the event. Thus a no. of careful corrections
need to applied to the raw measurements in order to do any
reliable analysis.

• The total visible transverse energy is obtained from

ET =
∑

n

En

cosh ηn
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MET profiles in the absence of missing energy

Note that in the absence of ET producing events, Ex&Ey are
expected to show a Gaussian profile with a standard deviation σ
and centered at zero, while ET will be described by the Rayleigh
distribution

ET = θ(ET ) ∗
ET

σ2
∗ exp(−

ET
2

2σ2
)
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MET profiles in the absence of missing energy

Figure 1: Ex and Ey will have a Gaussian profile

Figure 2: ET will be a Rayleigh distribution
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Experimental Challenges

• Energy Resolution : Need excellent energy resolution in all
calos. (Usually limited by non-linearities of calorimeter
response)

• Multi-jet events: Resolution is limited due to the statistical
fluctuations in showering

• Non-compensating HCAL
• Electronic noise, Pile-ups and Underlying Events
• MET tails: These are large and non-Gaussian. Hence very

hard to simulate; will have to wait for real data to see how
large the effect is.
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Experimental Challenges

• High Magnetic Field:
◦ Assigned direction of charged particle ~PT is different

from the “true” ~PT which gets bent
◦ low PT parts of the jets might be lost, giving a false MET

signal
• Energy loss due to punch throughs
• Faulty calorimeter cells
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Non linear HCAL response Vs ET

Figure 3: This is a single pion response as measured in Monte
Carlo simulations
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MET resolution

Most generally, the resolution of MET can be characterized in
terms of the following parameters

• A → noise, pile-ups (PU) and underlying events (UE)
• B → statistical sampling nature of energy deposits in the

calos.
• C → non-linear calorimeter response, dead material and

cracks
• D → the shift in ET due to noise, PU and UE

σ2(ET ) = A2 + B2(ET − D) + C2(ET − D)2

• A, B and C are a priory uncorrelated while A and D are
strongly correlated. However separating A and D is helpful.
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MET correction Strategies

• Calorimeter based MET correction
• Track-corrected MET
• PF-MET
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Calorimeter based MET corrections

Some of the major corrections applied to “colorimeter tower
based” ET are

• Jet Energy Scale (JES) corrections
• Muon corrections
• Corrections due to hadronically decaying Taus
• Electron corrections
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JES corrections : MCJet

• Adjust for the difference between the the raw jet energy ( as
seen in the calo.) and true jet energy, as defined by the Jet
Energy Scale group.

• Remove biases due to non-linear calorimeter response to
jet energy at different values of ET and rapidity

• Derived by fitting relative response of the calorimeter i.e.
Ej

T (Rec)/Ej
T (MC) with a Gaussian in each Ej

T , |ηj | bin

• The final result is a uniform response in η and ET
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Jet Response before and after corrections
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EMF dependent JES corrections

• More advanced in nature
• Applied on top of MCJet
• Take into account non-compensation in the calorimeter by

utilizing the fraction of jet energy deposited in ECAL

• Fit Ej
T (Rec) − Ej

T (MC) with a Gaussian in each Ej
T , |ηj | bin

• Can improve resolution of jet energy by as much as 10%
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Quality cuts on JES corrections

• Average MCJEt corrections are not applicable to true jets
with high EM fraction.
⇒ exclude jets with EMF above a certain threshold, from
the corrections

• Jet corrections are poorly known for jets at low P j
T

⇒ exclude jets with P j
T below a certain threshold, from the

corrections
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Performance of Q-cuts on JES corrections

Figure 4: Calo-MET vs Gen-MET without any EMF cuts; Red →

Gen-MET; Blue → Calo-MET with no PT cut on jets; Black → Calo-
MET using jets with pT > 20GeV ; Gen-MET was generated using MC
for W→ eν
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Performance of Q-cuts on JES corrections

Figure 5: Calo-MET (with EMF < 0.9) vs Gen-MET; Red → Gen-
MET; Blue → Calo-MET with no PT cut on jets; Black → Calo-MET
using jets with pT > 20GeV ; Gen-MET was generated using MC for
W→ eν
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Muon Corrections

• Muons deposit very little energy in the calos.
⇒ since ET is measured based on energy deposited in the
calos. only, therefore muons will lead to a significant ET

signal
• Muon momentum can be measured very precisely in the

muon chambers and the tracker
• Account for muons by adding their energy deposits in the

calos. to ET and then subtracting their transverse
momentum

ET corrected = ET +
∑

~Eµ
T,calo −

∑
~Pµ

T
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Quality cuts on Muon Corrections

In order to eliminate fake muons we also apply the following
quality cuts on muons

• muon must be a Global Muon
• Pµ

T > 10.0GeV/c

• Number of valid hits in the silicon tracker > 5
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Performance of Muon corrections

Figure 6: ET (in QCD Pythia MC events) including (red) and ex-
cluding (black) the muon corrections
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performance of Muon + JES corrections

Figure 7: simulation of measured MET for Z → µµ;uncorrected
calo-MET (Black) + Muon correction (Red) + Muon Deposit (Blue) +
JES (Green)
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Hadronically decaying Taus

• Reason for corrections due to Taus are same as those for
QCD jets i.e. non-compensating nature of the calos. and
magnetic field effects.

• QCD jet corrections can not be applied to Tau decays
◦ Hadronic jets due to Taus have low particle multiplicity

and fairly energetic products
◦ Large EM fraction in Tau decays due to π0 → γγ
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Tau corrections

• The corrections can be established by defining a region in
the calorimeter that is large enough to include energy
deposits of all decay products of a Tau. The energy
deposition is then replaced with the “true” tau transverse
energy.

• The true “visible” Tau energy can be approximated by the
measurements involving reconstruction of tau jets using
particle flow techniques.

• The region of interest can be defined by the Tau isolation
criteria, which is the main discriminator against QCD jets.

• The corrected ET then is obtained as

~ET corrected = ~ET −(
∑

reg

~Eτ
T,cal−

∑

reg

~EPU
T,cal−

∑

reg

~EUE
T,cal)+

∑

reg

~Eτ
T
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Performance of Tau corrections
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Electron Corrections

Electrons have excellent energy resolution and coverage of
ECAL. Thus corrections are small and won’t effect most of the
analysis.
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Other MET correction strategies

• Track-corrected MET: Compute MET by replacing the
“expected” energy deposition of good tracks of charged
hadron deposits with the corresponding momentum.
◦ The “expected” energy deposition is computed based on

response function derived from a single pion
Monte-Carlo sample

◦ Correcting Muons as pions results in under-corrections
and generates fake MET; use standard muon
corrections as described earlier

◦ Electrons deposit most of their energy in ECAL-treating
electrons as pions generates fake MET;remove tracks
matched to electrons
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Other MET correction strategies

• ET from Particle Flow:
◦ PF reconstruction algorithms provide a global event

description at the level of individually reconstructed
particles

◦ Include not only the charged particles but also photons,
stable and unstable neutral hadrons (which may not
necessarily be isolated)

◦ PF-MET is reconstructed with certain efficiency, fake
rate and possess a finite momentum resolution
⇒ Need to calibrate and verify MET
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The Significance variable

• Define a significance variable “S”

S =
ET

2

2σ2

ET

• S estimates the no. of standard deviations of the measured
event ET from the ET = 0 hypothesis. Thus in general S will
be small when ET can be attributed to measurement
resolution and large otherwise.
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Cosmic and Beam halo Cleaning

ET in an event can receive contributions from cosmic muons or
detector related background such as beam halo. To eliminate
such contributions

• require at least one primary vertex in the event
• event EMF < 0.1
• The event charge fraction Fch < 0.175
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Conclusion

• Measurement of ET will give important information about
many processes of interest

• A precise measurement of ET is plagued with experimental
challenges

• Improvement to calorimeter based ET can be made by
exploiting other CMS sub-detectors, particularly the tracker
due to its far more superior resolution

• A more refined resolution can be obtained by employing
particle flow tech.

• To ensure that detector malfunctions do not corrupt ET , a
Data Quality Monitoring system has been set up

• ET due to measurement resolution can be eliminated by
using the ET significance variable
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