HOMEWORK ASSIGNMENT \#1

October 01, 2009

1. Solve Problem 6.1.7 of Arfken and Weber (AW).
[Hint: Combine the two series, utilizing the fact that $\cos \theta+i \sin \theta=\exp (i \theta)$].
2. (a) Solve Problem 6.1.8 of AW.
(b) Examine the limiting behavior of formulae (a) and (b) of this problem as p tends to 1 . For the resulting formulae to be valid, what restrictions should be imposed on x ?
(c) Can you obtain the same limiting forms for these sums from formulae (a) and (b) of the previous problem by letting N go to infinity?
3. The imaginary part of an analytic function $f(z)$ is $i e^{-y} \sin x$.

What is $f(z)$?
[Hint: Exploit Cauchy-Riemann conditions].
4. Using "Schwarz reflection principle" --- Eqn. 6.59 of AW --- as applied to the Gamma function, show that
(i) $|\Gamma(1 / 2+i y)|=[\pi / \cosh (\pi y)]^{1 / 2}$, and
(ii) $|\Gamma(i y)|=[\pi / y \sinh (\pi y)]^{1 / 2}$.

In passing, examine the limiting behavior of these function as y tends to zero or to infinity.
5. Derive Laurent expansion(s) of the function $1 /[z(1-z)(2+z)]$ around the point $z=0$, such that
(a) the first expansion is valid for $0<|z|<1$,
(b) the second is valid for $1<|z|<2$, and
(c) the third is valid for $|z|>2$.

Interpret the values of the coefficient a_{-1} obtained in each of these cases in terms of the residues of the function $f(z)$ at its singular points.
6. (a) Locate the poles of the function $\cot z$ and evaluate the residues of this function at those poles.
(b) Expand $\cot z$ as a Laurent series around the point $z=0$, evaluating at least three non-vanishing terms of the series. What is the range of validity of this series?

