Chapter 7

Noether's Theorem

7.1 Continuous Symmetry Implies Conserved Charges

Consider a particle moving in two dimensions under the influence of an external potential $U(r)$. The potential is a function only of the magnitude of the vector \boldsymbol{r}. The Lagrangian is then

$$
\begin{equation*}
L=T-U=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\phi}^{2}\right)-U(r), \tag{7.1}
\end{equation*}
$$

where we have chosen generalized coordinates (r, ϕ). The momentum conjugate to ϕ is $p_{\phi}=m r^{2} \dot{\phi}$. The generalized force F_{ϕ} clearly vanishes, since L does not depend on the coordinate ϕ. (One says that L is 'cyclic' in ϕ.) Thus, although $r=r(t)$ and $\phi=\phi(t)$ will in general be time-dependent, the combination $p_{\phi}=m r^{2} \dot{\phi}$ is constant. This is the conserved angular momentum about the $\hat{\boldsymbol{z}}$ axis.

If instead the particle moved in a potential $U(y)$, independent of x, then writing

$$
\begin{equation*}
L=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)-U(y), \tag{7.2}
\end{equation*}
$$

we have that the momentum $p_{x}=\partial L / \partial \dot{x}=m \dot{x}$ is conserved, because the generalized force $F_{x}=\partial L / \partial x=0$ vanishes. This situation pertains in a uniform gravitational field, with $U(x, y)=m g y$, independent of x. The horizontal component of momentum is conserved.

In general, whenever the system exhibits a continuous symmetry, there is an associated conserved charge. (The terminology 'charge' is from field theory.) Indeed, this is a rigorous result, known as Noether's Theorem. Consider a one-parameter family of transformations,

$$
\begin{equation*}
q_{\sigma} \longrightarrow \tilde{q}_{\sigma}(q, \zeta), \tag{7.3}
\end{equation*}
$$

where ζ is the continuous parameter. Suppose further (without loss of generality) that at $\zeta=0$ this transformation is the identity, i.e. $\tilde{q}_{\sigma}(q, 0)=q_{\sigma}$. The transformation may be nonlinear in the generalized coordinates. Suppose further that the Lagrangian $L \mathrm{~s}$ invariant
under the replacement $q \rightarrow \tilde{q}$. Then we must have

$$
\begin{align*}
0=\left.\frac{d}{d \zeta}\right|_{\zeta=0} L(\tilde{q}, \dot{\tilde{q}}, t) & =\left.\frac{\partial L}{\partial q_{\sigma}} \frac{\partial \tilde{q}_{\sigma}}{\partial \zeta}\right|_{\zeta=0}+\left.\frac{\partial L}{\partial \dot{q}_{\sigma}} \frac{\partial \dot{\tilde{q}}_{\sigma}}{\partial \zeta}\right|_{\zeta=0} \\
& =\left.\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{\sigma}}\right) \frac{\partial \tilde{q}_{\sigma}}{\partial \zeta}\right|_{\zeta=0}+\frac{\partial L}{\partial \dot{q}_{\sigma}} \frac{d}{d t}\left(\frac{\partial \tilde{q}_{\sigma}}{\partial \zeta}\right)_{\zeta=0} \\
& =\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{\sigma}} \frac{\partial \tilde{q}_{\sigma}}{\partial \zeta}\right)_{\zeta=0} \tag{7.4}
\end{align*}
$$

Thus, there is an associated conserved charge

$$
\begin{equation*}
\Lambda=\left.\frac{\partial L}{\partial \dot{q}_{\sigma}} \frac{\partial \tilde{q}_{\sigma}}{\partial \zeta}\right|_{\zeta=0} \tag{7.5}
\end{equation*}
$$

7.1.1 Examples of one-parameter families of transformations

Consider the Lagrangian

$$
\begin{equation*}
L=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)-U\left(\sqrt{x^{2}+y^{2}}\right) . \tag{7.6}
\end{equation*}
$$

In two-dimensional polar coordinates, we have

$$
\begin{equation*}
L=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\phi}^{2}\right)-U(r) \tag{7.7}
\end{equation*}
$$

and we may now define

$$
\begin{align*}
& \tilde{r}(\zeta)=r \tag{7.8}\\
& \tilde{\phi}(\zeta)=\phi+\zeta . \tag{7.9}
\end{align*}
$$

Note that $\tilde{r}(0)=r$ and $\tilde{\phi}(0)=\phi$, i.e. the transformation is the identity when $\zeta=0$. We now have

$$
\begin{equation*}
\Lambda=\left.\sum_{\sigma} \frac{\partial L}{\partial \dot{q}_{\sigma}} \frac{\partial \tilde{q}_{\sigma}}{\partial \zeta}\right|_{\zeta=0}=\left.\frac{\partial L}{\partial \dot{r}} \frac{\partial \tilde{r}}{\partial \zeta}\right|_{\zeta=0}+\left.\frac{\partial L}{\partial \dot{\phi}} \frac{\partial \tilde{\phi}}{\partial \zeta}\right|_{\zeta=0}=m r^{2} \dot{\phi} \tag{7.10}
\end{equation*}
$$

Another way to derive the same result which is somewhat instructive is to work out the transformation in Cartesian coordinates. We then have

$$
\begin{align*}
& \tilde{x}(\zeta)=x \cos \zeta-y \sin \zeta \tag{7.11}\\
& \tilde{y}(\zeta)=x \sin \zeta+y \cos \zeta . \tag{7.12}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\frac{\partial \tilde{x}}{\partial \zeta}=-y(\zeta) \quad, \quad \frac{\partial \tilde{y}}{\partial \zeta}=x(\zeta) \tag{7.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\Lambda=\left.\frac{\partial L}{\partial \dot{x}} \frac{\partial \tilde{x}}{\partial \zeta}\right|_{\zeta=0}+\left.\frac{\partial L}{\partial \dot{y}} \frac{\partial \tilde{y}}{\partial \zeta}\right|_{\zeta=0}=m(x \dot{y}-y \dot{x}) \tag{7.14}
\end{equation*}
$$

But

$$
\begin{equation*}
m(x \dot{y}-y \dot{x})=m \hat{\boldsymbol{z}} \cdot \boldsymbol{r} \times \dot{\boldsymbol{r}}=m r^{2} \dot{\phi} . \tag{7.15}
\end{equation*}
$$

As another example, consider the potential

$$
\begin{equation*}
U(\rho, \phi, z)=V(\rho, a \phi+z), \tag{7.16}
\end{equation*}
$$

where (ρ, ϕ, z) are cylindrical coordinates for a particle of mass m, and where a is a constant with dimensions of length. The Lagrangian is

$$
\begin{equation*}
\frac{1}{2} m\left(\dot{\rho}^{2}+\rho^{2} \dot{\phi}^{2}+\dot{x}^{2}\right)-V(\rho, a \phi+z) . \tag{7.17}
\end{equation*}
$$

This model possesses a helical symmetry, with a one-parameter family

$$
\begin{align*}
& \tilde{\rho}(\zeta)=\rho \tag{7.18}\\
& \tilde{\phi}(\zeta)=\phi+\zeta \tag{7.19}\\
& \tilde{z}(\zeta)=z-\zeta a \tag{7.20}
\end{align*}
$$

Note that

$$
\begin{equation*}
a \tilde{\phi}+\tilde{z}=a \phi+z, \tag{7.21}
\end{equation*}
$$

so the potential energy, and the Lagrangian as well, is invariant under this one-parameter family of transformations. The conserved charge for this symmetry is

$$
\begin{equation*}
\Lambda=\left.\frac{\partial L}{\partial \dot{\rho}} \frac{\partial \tilde{\rho}}{\partial \zeta}\right|_{\zeta=0}+\left.\frac{\partial L}{\partial \dot{\phi}} \frac{\partial \tilde{\phi}}{\partial \zeta}\right|_{\zeta=0}+\left.\frac{\partial L}{\partial \dot{z}} \frac{\partial \tilde{z}}{\partial \zeta}\right|_{\zeta=0}=m \rho^{2} \dot{\phi}-m a \dot{z} \tag{7.22}
\end{equation*}
$$

We can check explicitly that Λ is conserved, using the equations of motion

$$
\begin{gather*}
\frac{d}{d t} \frac{\partial L}{\partial \dot{\phi}}=\frac{d}{d t}\left(m \rho^{2} \dot{\phi}\right)=\frac{\partial L}{\partial \phi}=-a \frac{\partial V}{\partial z} \tag{7.23}\\
\frac{d}{d t} \frac{\partial L}{\partial \dot{\phi}}=\frac{d}{d t}(m \dot{z})=\frac{\partial L}{\partial \phi}=-\frac{\partial V}{\partial z} . \tag{7.24}
\end{gather*}
$$

Thus,

$$
\begin{equation*}
\dot{\Lambda}=\frac{d}{d t}\left(m \rho^{2} \dot{\phi}\right)-a \frac{d}{d t}(m \dot{z})=0 . \tag{7.25}
\end{equation*}
$$

7.2 Conservation of Linear and Angular Momentum

Suppose that the Lagrangian of a mechanical system is invariant under a uniform translation of all particles in the $\hat{\boldsymbol{n}}$ direction. Then our one-parameter family of transformations is given by

$$
\begin{equation*}
\tilde{\boldsymbol{x}}_{a}=\boldsymbol{x}_{a}+\zeta \hat{\boldsymbol{n}}, \tag{7.26}
\end{equation*}
$$

and the associated conserved Noether charge is

$$
\begin{equation*}
\Lambda=\sum_{a} \frac{\partial L}{\partial \dot{\boldsymbol{x}}_{a}} \cdot \hat{\boldsymbol{n}}=\hat{\boldsymbol{n}} \cdot \boldsymbol{P} \tag{7.27}
\end{equation*}
$$

where $\boldsymbol{P}=\sum_{a} \boldsymbol{p}_{a}$ is the total momentum of the system.
If the Lagrangian of a mechanical system is invariant under rotations about an axis $\hat{\boldsymbol{n}}$, then

$$
\begin{align*}
\tilde{\boldsymbol{x}}_{a} & =R(\zeta, \hat{\boldsymbol{n}}) \boldsymbol{x}_{a} \\
& =\boldsymbol{x}_{a}+\zeta \hat{\boldsymbol{n}} \times \boldsymbol{x}_{a}+\mathcal{O}\left(\zeta^{2}\right), \tag{7.28}
\end{align*}
$$

where we have expanded the rotation matrix $R(\zeta, \hat{\boldsymbol{n}})$ in powers of ζ. The conserved Noether charge associated with this symmetry is

$$
\begin{equation*}
\Lambda=\sum_{a} \frac{\partial L}{\partial \dot{\boldsymbol{x}}_{a}} \cdot \hat{\boldsymbol{n}} \times \boldsymbol{x}_{a}=\hat{\boldsymbol{n}} \cdot \sum_{a} \boldsymbol{x}_{a} \times \boldsymbol{p}_{a}=\hat{\boldsymbol{n}} \cdot \boldsymbol{L}, \tag{7.29}
\end{equation*}
$$

where \boldsymbol{L} is the total angular momentum of the system.

7.3 Advanced Discussion : Invariance of L vs. Invariance of S

Observant readers might object that demanding invariance of L is too strict. We should instead be demanding invariance of the action S^{1}. Suppose S is invariant under

$$
\begin{align*}
t & \rightarrow \tilde{t}(q, t, \zeta) \tag{7.30}\\
q_{\sigma}(t) & \rightarrow \tilde{q}_{\sigma}(q, t, \zeta) . \tag{7.31}
\end{align*}
$$

Then invariance of S means

$$
\begin{equation*}
S=\int_{t_{a}}^{t_{b}} d t L(q, \dot{q}, t)=\int_{\tilde{t}_{a}}^{\tilde{t}_{b}} d t L(\tilde{q}, \dot{\tilde{q}}, t) \tag{7.32}
\end{equation*}
$$

Note that t is a dummy variable of integration, so it doesn't matter whether we call it t or \tilde{t}. The endpoints of the integral, however, do change under the transformation. Now consider an infinitesimal transformation, for which $\delta t=\tilde{t}-t$ and $\delta q=\tilde{q}(\tilde{t})-q(t)$ are both small. Invariance of S means

$$
\begin{equation*}
S=\int_{t_{a}}^{t_{b}} d t L(q, \dot{q}, t)=\int_{t_{a}+\delta t_{a}}^{t_{b}+\delta t_{b}} d t\left\{L(q, \dot{q}, t)+\frac{\partial L}{\partial q_{\sigma}} \bar{\delta} q_{\sigma}+\frac{\partial L}{\partial \dot{q}_{\sigma}} \bar{\delta} \dot{q}_{\sigma}+\ldots\right\}, \tag{7.33}
\end{equation*}
$$

[^0]where
\[

$$
\begin{align*}
\bar{\delta} q_{\sigma}(t) & \equiv \tilde{q}_{\sigma}(t)-q_{\sigma}(t) \\
& =\tilde{q}_{\sigma}(\tilde{t})-\tilde{q}_{\sigma}(\tilde{t})+\tilde{q}_{\sigma}(t)-q_{\sigma}(t) \\
& =\delta q_{\sigma}-\dot{q}_{\sigma} \delta t+\mathcal{O}(\delta q \delta t) \tag{7.34}
\end{align*}
$$
\]

Subtracting the top line from the bottom, we obtain

$$
\begin{align*}
0 & =L_{b} \delta t_{b}-L_{a} \delta t_{a}+\left.\frac{\partial L}{\partial \dot{q}_{\sigma}}\right|_{b} q_{\sigma, b}-\left.\frac{\partial L}{\partial \dot{q}_{\sigma}}\right|_{a} \bar{\delta} q_{\sigma, a}+\int_{t_{a}+\delta t_{a}}^{t_{b}+\delta t_{b}} d t \\
& \left.=\int_{t_{a}}^{t_{b}} d t \frac{\partial L}{\partial q_{\sigma}}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{\sigma}}\right)\right\} \bar{\delta} q(t) \tag{7.35}\\
\partial \dot{q}_{\sigma} & \left.\left.\dot{q}_{\sigma}\right) \delta t+\frac{\partial L}{\partial \dot{q}_{\sigma}} \delta q_{\sigma}\right\} .
\end{align*}
$$

Thus, if $\zeta \equiv \delta \zeta$ is infinitesimal, and

$$
\begin{align*}
\delta t & =A(q, t) \delta \zeta \tag{7.36}\\
\delta q_{\sigma} & =B_{\sigma}(q, t) \delta \zeta \tag{7.37}
\end{align*}
$$

then the conserved charge is

$$
\begin{align*}
\Lambda & =\left(L-\frac{\partial L}{\partial \dot{q}_{\sigma}} \dot{q}_{\sigma}\right) A(q, t)+\frac{\partial L}{\partial \dot{q}_{\sigma}} B_{\sigma}(q, t) \\
& =-H(q, p, t) A(q, t)+p_{\sigma} B_{\sigma}(q, t) . \tag{7.38}
\end{align*}
$$

Thus, when $A=0$, we recover our earlier results, obtained by assuming invariance of L. Note that conservation of H follows from time translation invariance: $t \rightarrow t+\zeta$, for which $A=1$ and $B_{\sigma}=0$. Here we have written

$$
\begin{equation*}
H=p_{\sigma} \dot{q}_{\sigma}-L \tag{7.39}
\end{equation*}
$$

and expressed it in terms of the momenta p_{σ}, the coordinates q_{σ}, and time $t . H$ is called the Hamiltonian.

7.3.1 The Hamiltonian

The Lagrangian is a function of generalized coordinates, velocities, and time. The canonical momentum conjugate to the generalized coordinate q_{σ} is

$$
\begin{equation*}
p_{\sigma}=\frac{\partial L}{\partial \dot{q}_{\sigma}} . \tag{7.40}
\end{equation*}
$$

The Hamiltonian is a function of coordinates, momenta, and time. It is defined as the Legendre transform of L :

$$
\begin{equation*}
H(q, p, t)=\sum_{\sigma} p_{\sigma} \dot{q}_{\sigma}-L \tag{7.41}
\end{equation*}
$$

Let's examine the differential of H :

$$
\begin{align*}
d H & =\sum_{\sigma}\left(\dot{q}_{\sigma} d p_{\sigma}+p_{\sigma} d \dot{q}_{\sigma}-\frac{\partial L}{\partial q_{\sigma}} d q_{\sigma}-\frac{\partial L}{\partial \dot{q}_{\sigma}} d \dot{q}_{\sigma}\right)-\frac{\partial L}{\partial t} d t \\
& =\sum_{\sigma}\left(\dot{q}_{\sigma} d p_{\sigma}-\frac{\partial L}{\partial q_{\sigma}} d q_{\sigma}\right)-\frac{\partial L}{\partial t} d t \tag{7.42}
\end{align*}
$$

where we have invoked the definition of p_{σ} to cancel the coefficients of $d \dot{q}_{\sigma}$. Since $\dot{p}_{\sigma}=$ $\partial L / \partial q_{\sigma}$, we have Hamilton's equations of motion,

$$
\begin{equation*}
\dot{q}_{\sigma}=\frac{\partial H}{\partial p_{\sigma}} \quad, \quad \dot{p}_{\sigma}=-\frac{\partial H}{\partial q_{\sigma}} . \tag{7.43}
\end{equation*}
$$

Thus, we can write

$$
\begin{equation*}
d H=\sum_{\sigma}\left(\dot{q}_{\sigma} d p_{\sigma}-\dot{p}_{\sigma} d q_{\sigma}\right)-\frac{\partial L}{\partial t} d t \tag{7.44}
\end{equation*}
$$

Dividing by $d t$, we obtain

$$
\begin{equation*}
\frac{d H}{d t}=-\frac{\partial L}{\partial t} \tag{7.45}
\end{equation*}
$$

which says that the Hamiltonian is conserved (i.e. it does not change with time) whenever there is no explicit time dependence to L.

Example \#1: For a simple $d=1$ system with $L=\frac{1}{2} m \dot{x}^{2}-U(x)$, we have $p=m \dot{x}$ and

$$
\begin{equation*}
H=p \dot{x}-L=\frac{1}{2} m \dot{x}^{2}+U(x)=\frac{p^{2}}{2 m}+U(x) . \tag{7.46}
\end{equation*}
$$

Example \#2 : Consider now the mass point - wedge system analyzed above, with

$$
\begin{equation*}
L=\frac{1}{2}(M+m) \dot{X}^{2}+m \dot{X} \dot{x}+\frac{1}{2} m\left(1+\tan ^{2} \alpha\right) \dot{x}^{2}-m g x \tan \alpha \tag{7.47}
\end{equation*}
$$

The canonical momenta are

$$
\begin{align*}
P & =\frac{\partial L}{\partial \dot{X}}=(M+m) \dot{X}+m \dot{x} \tag{7.48}\\
p & =\frac{\partial L}{\partial \dot{x}}=m \dot{X}+m\left(1+\tan ^{2} \alpha\right) \dot{x} \tag{7.49}
\end{align*}
$$

The Hamiltonian is given by

$$
\begin{align*}
H & =P \dot{X}+p \dot{x}-L \\
& =\frac{1}{2}(M+m) \dot{X}^{2}+m \dot{X} \dot{x}+\frac{1}{2} m\left(1+\tan ^{2} \alpha\right) \dot{x}^{2}+m g x \tan \alpha \tag{7.50}
\end{align*}
$$

However, this is not quite H, since $H=H(X, x, P, p, t)$ must be expressed in terms of the coordinates and the momenta and not the coordinates and velocities. So we must eliminate \dot{X} and \dot{x} in favor of P and p. We do this by inverting the relations

$$
\binom{P}{p}=\left(\begin{array}{cc}
M+m & m \tag{7.51}\\
m & m\left(1+\tan ^{2} \alpha\right)
\end{array}\right)\binom{\dot{X}}{\dot{x}}
$$

to obtain

$$
\binom{\dot{X}}{\dot{x}}=\frac{1}{m\left(M+(M+m) \tan ^{2} \alpha\right)}\left(\begin{array}{cc}
m\left(1+\tan ^{2} \alpha\right) & -m \tag{7.52}\\
-m & M+m
\end{array}\right)\binom{P}{p} .
$$

Substituting into 7.50, we obtain

$$
\begin{equation*}
H=\frac{M+m}{2 m} \frac{P^{2} \cos ^{2} \alpha}{M+m \sin ^{2} \alpha}-\frac{P p \cos ^{2} \alpha}{M+m \sin ^{2} \alpha}+\frac{p^{2}}{2\left(M+m \sin ^{2} \alpha\right)}+m g x \tan \alpha . \tag{7.53}
\end{equation*}
$$

Notice that $\dot{P}=0$ since $\frac{\partial L}{\partial X}=0$. P is the total horizontal momentum of the system (wedge plus particle) and it is conserved.

7.3.2 Is $H=T+U$?

The most general form of the kinetic energy is

$$
\begin{align*}
T & =T_{2}+T_{1}+T_{0} \\
& =\frac{1}{2} T_{\sigma \sigma^{\prime}}^{(2)}(q, t) \dot{q}_{\sigma} \dot{q}_{\sigma^{\prime}}+T_{\sigma}^{(1)}(q, t) \dot{q}_{\sigma}+T^{(0)}(q, t), \tag{7.54}
\end{align*}
$$

where $T^{(n)}(q, \dot{q}, t)$ is homogeneous of degree n in the velocities ${ }^{2}$. We assume a potential energy of the form

$$
\begin{align*}
U & =U_{1}+U_{0} \\
& =U_{\sigma}^{(1)}(q, t) \dot{q}_{\sigma}+U^{(0)}(q, t), \tag{7.55}
\end{align*}
$$

which allows for velocity-dependent forces, as we have with charged particles moving in an electromagnetic field. The Lagrangian is then

$$
\begin{equation*}
L=T-U=\frac{1}{2} T_{\sigma \sigma^{\prime}}^{(2)}(q, t) \dot{q}_{\sigma} \dot{q}_{\sigma^{\prime}}+T_{\sigma}^{(1)}(q, t) \dot{q}_{\sigma}+T^{(0)}(q, t)-U_{\sigma}^{(1)}(q, t) \dot{q}_{\sigma}-U^{(0)}(q, t) . \tag{7.56}
\end{equation*}
$$

We have assumed $U(q, t)$ is velocity-independent, but the above form for $L=T-U$ is quite general. (E.g. any velocity-dependence in U can be absorbed into the $B_{\sigma} \dot{q}_{\sigma}$ term.) The canonical momentum conjugate to q_{σ} is

$$
\begin{equation*}
p_{\sigma}=\frac{\partial L}{\partial \dot{q}_{\sigma}}=T_{\sigma \sigma^{\prime}}^{(2)} \dot{q}_{\sigma^{\prime}}+T_{\sigma}^{(1)}(q, t)-U_{\sigma}^{(1)}(q, t) \tag{7.57}
\end{equation*}
$$

[^1]which is inverted to give
\[

$$
\begin{equation*}
\dot{q}_{\sigma}=T_{\sigma \sigma^{\prime}}^{(2)-1}\left(p_{\sigma^{\prime}}-T_{\sigma^{\prime}}^{(1)}+U_{\sigma^{\prime}}^{(1)}\right) . \tag{7.58}
\end{equation*}
$$

\]

The Hamiltonian is then

$$
\begin{align*}
H & =p_{\sigma} \dot{q}_{\sigma}-L \\
& =\frac{1}{2} T_{\sigma \sigma^{\prime}}^{(2)-1}\left(p_{\sigma}-T_{\sigma}^{(1)}+U_{\sigma}^{(1)}\right)\left(p_{\sigma^{\prime}}-T_{\sigma^{\prime}}^{(1)}+U_{\sigma^{\prime}}^{(1)}\right)-T_{0}+U_{0} \tag{7.59}\\
& =T_{2}-T_{0}+U_{0} . \tag{7.60}
\end{align*}
$$

If T_{0}, T_{1}, and U_{1} vanish, i.e. if $T(q, \dot{q}, t)$ is a homogeneous function of degree two in the generalized velocities, and $U(q, t)$ is velocity-independent, then $H=T+U$. But if T_{0} or T_{1} is nonzero, or the potential is velocity-dependent, then $H \neq T+U$.

7.3.3 Example: A bead on a rotating hoop

Consider a bead of mass m constrained to move along a hoop of radius a. The hoop is further constrained to rotate with angular velocity ω about the $\hat{\boldsymbol{z}}$-axis, as shown in Fig. 7.1 .

The most convenient set of generalized coordinates is spherical polar (r, θ, ϕ), in which case

$$
\begin{align*}
T & =\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2} \theta \dot{\phi}^{2}\right) \\
& =\frac{1}{2} m a^{2}\left(\dot{\theta}^{2}+\omega^{2} \sin ^{2} \theta\right) . \tag{7.61}
\end{align*}
$$

Thus, $T_{2}=\frac{1}{2} m a^{2} \dot{\theta}^{2}$ and $T_{0}=\frac{1}{2} m a^{2} \omega^{2} \sin ^{2} \theta$. The potential energy is $U(\theta)=m g a(1-\cos \theta)$. The momentum conjugate to θ is $p_{\theta}=m a^{2} \dot{\theta}$, and thus

$$
\begin{align*}
H(\theta, p) & =T_{2}-T_{0}+U \\
& =\frac{1}{2} m a^{2} \dot{\theta}^{2}-\frac{1}{2} m a^{2} \omega^{2} \sin ^{2} \theta+m g a(1-\cos \theta) \\
& =\frac{p_{\theta}^{2}}{2 m a^{2}}-\frac{1}{2} m a^{2} \omega^{2} \sin ^{2} \theta+m g a(1-\cos \theta) \tag{7.62}
\end{align*}
$$

For this problem, we can define the effective potential

$$
\begin{align*}
U_{\mathrm{eff}}(\theta) \equiv U-T_{0} & =m g a(1-\cos \theta)-\frac{1}{2} m a^{2} \omega^{2} \sin ^{2} \theta \\
& =m g a\left(1-\cos \theta-\frac{\omega^{2}}{2 \omega_{0}^{2}} \sin ^{2} \theta\right), \tag{7.63}
\end{align*}
$$

where $\omega_{0} \equiv g / a^{2}$. The Lagrangian may then be written

$$
\begin{equation*}
L=\frac{1}{2} m a^{2} \dot{\theta}^{2}-U_{\mathrm{eff}}(\theta), \tag{7.64}
\end{equation*}
$$

Figure 7.1: A bead of mass m on a rotating hoop of radius a.
and thus the equations of motion are

$$
\begin{equation*}
m a^{2} \ddot{\theta}=-\frac{\partial U_{\mathrm{eff}}}{\partial \theta} . \tag{7.65}
\end{equation*}
$$

Equilibrium is achieved when $U_{\text {eff }}^{\prime}(\theta)=0$, which gives

$$
\begin{equation*}
\frac{\partial U_{\mathrm{eff}}}{\partial \theta}=m g a \sin \theta\left\{1-\frac{\omega^{2}}{\omega_{0}^{2}} \cos \theta\right\}=0 \tag{7.66}
\end{equation*}
$$

i.e. $\theta^{*}=0, \theta^{*}=\pi$, or $\theta^{*}= \pm \cos ^{-1}\left(\omega_{0}^{2} / \omega^{2}\right)$, where the last pair of equilibria are present only for $\omega^{2}>\omega_{0}^{2}$. The stability of these equilibria is assessed by examining the sign of $U_{\text {eff }}^{\prime \prime}\left(\theta^{*}\right)$. We have

$$
\begin{equation*}
U_{\mathrm{eff}}^{\prime \prime}(\theta)=m g a\left\{\cos \theta-\frac{\omega^{2}}{\omega_{0}^{2}}\left(2 \cos ^{2} \theta-1\right)\right\} . \tag{7.67}
\end{equation*}
$$

Figure 7.2: The effective potential $U_{\mathrm{eff}}(\theta)=m g a\left[1-\cos \theta-\frac{\omega^{2}}{2 \omega_{0}^{2}} \sin ^{2} \theta\right]$. (The dimensionless potential $\tilde{U}_{\text {eff }}(x)=U_{\text {eff }} / m g a$ is shown, where $x=\theta / \pi$.) Left panels: $\omega=\frac{1}{2} \sqrt{3} \omega_{0}$. Right panels: $\omega=\sqrt{3} \omega_{0}$.

Thus,

$$
U_{\mathrm{eff}}^{\prime \prime}\left(\theta^{*}\right)= \begin{cases}m g a\left(1-\frac{\omega^{2}}{\omega_{0}^{2}}\right) & \text { at } \theta^{*}=0 \tag{7.68}\\ -m g a\left(1+\frac{\omega^{2}}{\omega_{0}^{2}}\right) & \text { at } \theta^{*}=\pi \\ m g a\left(\frac{\omega^{2}}{\omega_{0}^{2}}-\frac{\omega_{0}^{2}}{\omega^{2}}\right) & \text { at } \theta^{*}= \pm \cos ^{-1}\left(\frac{\omega_{0}^{2}}{\omega^{2}}\right)\end{cases}
$$

Thus, $\theta^{*}=0$ is stable for $\omega^{2}<\omega_{0}^{2}$ but becomes unstable when the rotation frequency ω is sufficiently large, i.e. when $\omega^{2}>\omega_{0}^{2}$. In this regime, there are two new equilibria, at $\theta^{*}= \pm \cos ^{-1}\left(\omega_{0}^{2} / \omega^{2}\right)$, which are both stable. The equilibrium at $\theta^{*}=\pi$ is always unstable, independent of the value of ω. The situation is depicted in Fig. 7.2.

7.4 Charged Particle in a Magnetic Field

Consider next the case of a charged particle moving in the presence of an electromagnetic field. The particle's potential energy is

$$
\begin{equation*}
U(\boldsymbol{r})=q \phi(\boldsymbol{r}, t)-\frac{q}{c} \boldsymbol{A}(\boldsymbol{r}, t) \cdot \dot{\boldsymbol{r}} \tag{7.69}
\end{equation*}
$$

which $i s$ velocity-dependent. The kinetic energy is $T=\frac{1}{2} m \dot{\boldsymbol{r}}^{2}$, as usual. Here $\phi(\boldsymbol{r})$ is the scalar potential and $\boldsymbol{A}(\boldsymbol{r})$ the vector potential. The electric and magnetic fields are given by

$$
\begin{equation*}
\boldsymbol{E}=-\nabla \phi-\frac{1}{c} \frac{\partial \boldsymbol{A}}{\partial t} \quad, \quad \boldsymbol{B}=\nabla \times \boldsymbol{A} \tag{7.70}
\end{equation*}
$$

The canonical momentum is

$$
\begin{equation*}
\boldsymbol{p}=\frac{\partial L}{\partial \dot{\boldsymbol{r}}}=m \dot{\boldsymbol{r}}+\frac{q}{c} \boldsymbol{A} \tag{7.71}
\end{equation*}
$$

and hence the Hamiltonian is

$$
\begin{align*}
H(\boldsymbol{r}, \boldsymbol{p}, t) & =\boldsymbol{p} \cdot \dot{\boldsymbol{r}}-L \\
& =m \dot{\boldsymbol{r}}^{2}+\frac{q}{c} \boldsymbol{A} \cdot \dot{\boldsymbol{r}}-\frac{1}{2} m \dot{\boldsymbol{r}}^{2}-\frac{q}{c} \boldsymbol{A} \cdot \dot{\boldsymbol{r}}+q \phi \\
& =\frac{1}{2} m \dot{\boldsymbol{r}}^{2}+q \phi \\
& =\frac{1}{2 m}\left(\boldsymbol{p}-\frac{q}{c} \boldsymbol{A}(\boldsymbol{r}, t)\right)^{2}+q \phi(\boldsymbol{r}, t) . \tag{7.72}
\end{align*}
$$

If \boldsymbol{A} and ϕ are time-independent, then $H(\boldsymbol{r}, \boldsymbol{p})$ is conserved.
Let's work out the equations of motion. We have

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\boldsymbol{r}}}\right)=\frac{\partial L}{\partial \boldsymbol{r}} \tag{7.73}
\end{equation*}
$$

which gives

$$
\begin{equation*}
m \ddot{\boldsymbol{r}}+\frac{q}{c} \frac{d \boldsymbol{A}}{d t}=-q \nabla \phi+\frac{q}{c} \nabla(\boldsymbol{A} \cdot \dot{\boldsymbol{r}}) \tag{7.74}
\end{equation*}
$$

or, in component notation,

$$
\begin{equation*}
m \ddot{x}_{i}+\frac{q}{c} \frac{\partial A_{i}}{\partial x_{j}} \dot{x}_{j}+\frac{q}{c} \frac{\partial A_{i}}{\partial t}=-q \frac{\partial \phi}{\partial x_{i}}+\frac{q}{c} \frac{\partial A_{j}}{\partial x_{i}} \dot{x}_{j} \tag{7.75}
\end{equation*}
$$

which is to say

$$
\begin{equation*}
m \ddot{x}_{i}=-q \frac{\partial \phi}{\partial x_{i}}-\frac{q}{c} \frac{\partial A_{i}}{\partial t}+\frac{q}{c}\left(\frac{\partial A_{j}}{\partial x_{i}}-\frac{\partial A_{i}}{\partial x_{j}}\right) \dot{x}_{j} \tag{7.76}
\end{equation*}
$$

It is convenient to express the cross product in terms of the completely antisymmetric tensor of rank three, $\epsilon_{i j k}$:

$$
\begin{equation*}
B_{i}=\epsilon_{i j k} \frac{\partial A_{k}}{\partial x_{j}} \tag{7.77}
\end{equation*}
$$

and using the result

$$
\begin{equation*}
\epsilon_{i j k} \epsilon_{i m n}=\delta_{j m} \delta_{k n}-\delta_{j n} \delta_{k m}, \tag{7.78}
\end{equation*}
$$

we have $\epsilon_{i j k} B_{i}=\partial_{j} A_{k}-\partial_{k} A_{j}$, and

$$
\begin{equation*}
m \ddot{x}_{i}=-q \frac{\partial \phi}{\partial x_{i}}-\frac{q}{c} \frac{\partial A_{i}}{\partial t}+\frac{q}{c} \epsilon_{i j k} \dot{x}_{j} B_{k} \tag{7.79}
\end{equation*}
$$

or, in vector notation,

$$
\begin{align*}
m \ddot{\boldsymbol{r}} & =-q \boldsymbol{\nabla} \phi-\frac{q}{c} \frac{\partial \boldsymbol{A}}{\partial t}+\frac{q}{c} \dot{\boldsymbol{r}} \times(\boldsymbol{\nabla} \times \boldsymbol{A}) \\
& =q \boldsymbol{E}+\frac{q}{c} \dot{\boldsymbol{r}} \times \boldsymbol{B}, \tag{7.80}
\end{align*}
$$

which is, of course, the Lorentz force law.

7.5 Fast Perturbations : Rapidly Oscillating Fields

Consider a free particle moving under the influence of an oscillating force,

$$
\begin{equation*}
m \ddot{q}=F \sin \omega t \tag{7.81}
\end{equation*}
$$

The motion of the system is then

$$
\begin{equation*}
q(t)=q_{\mathrm{h}}(t)-\frac{F \sin \omega t}{m \omega^{2}}, \tag{7.82}
\end{equation*}
$$

where $q_{\mathrm{h}}(t)=A+B t$ is the solution to the homogeneous (unforced) equation of motion. Note that the amplitude of the response $q-q_{\mathrm{h}}$ goes as ω^{-2} and is therefore small when ω is large.

Now consider a general $n=1$ system, with

$$
\begin{equation*}
H(q, p, t)=H_{0}(q, p)+V(q) \sin (\omega t+\delta) . \tag{7.83}
\end{equation*}
$$

We assume that ω is much greater than any natural oscillation frequency associated with H_{0}. We separate the motion $q(t)$ and $p(t)$ into slow and fast components:

$$
\begin{align*}
& q(t)=\bar{q}(t)+\zeta(t) \tag{7.84}\\
& p(t)=\bar{p}(t)+\pi(t), \tag{7.85}
\end{align*}
$$

where $\zeta(t)$ and $\pi(t)$ oscillate with the driving frequency ω. Since ζ and π will be small, we expand Hamilton's equations in these quantities:

$$
\begin{gather*}
\dot{\bar{q}}+\dot{\zeta}=\frac{\partial H_{0}}{\partial \bar{p}}+\frac{\partial^{2} H_{0}}{\partial \bar{p}^{2}} \pi+\frac{\partial^{2} H_{0}}{\partial \bar{q} \partial \bar{p}} \zeta+\frac{1}{2} \frac{\partial^{3} H_{0}}{\partial \bar{q}^{2} \partial \bar{p}} \zeta^{2}+\frac{\partial^{3} H_{0}}{\partial \bar{q} \partial \bar{p}^{2}} \zeta \pi+\frac{1}{2} \frac{\partial^{3} H_{0}}{\partial \bar{p}^{3}} \pi^{2}+\ldots \tag{7.86}\\
\dot{\bar{p}}+\dot{\pi}=-\frac{\partial H_{0}}{\partial \bar{q}}-\frac{\partial^{2} H_{0}}{\partial \bar{q}^{2}} \zeta-\frac{\partial^{2} H_{0}}{\partial \bar{q} \partial \bar{p}} \pi-\frac{1}{2} \frac{\partial^{3} H_{0}}{\partial \bar{q}^{3}} \zeta^{2}-\frac{\partial^{3} H_{0}}{\partial \bar{q}^{2} \partial \bar{p}} \zeta \pi-\frac{1}{2} \frac{\partial^{3} H_{0}}{\partial \bar{q} \partial \bar{p}^{2}} \pi^{2} \\
 \tag{7.87}\\
-\frac{\partial V}{\partial \bar{q}} \sin (\omega t+\delta)-\frac{\partial^{2} V}{\partial \bar{q}^{2}} \zeta \sin (\omega t+\delta)-\ldots .
\end{gather*}
$$

We now average over the fast degrees of freedom to obtain an equation of motion for the slow variables \bar{q} and \bar{p}, which we here carry to lowest nontrivial order in averages of fluctuating quantities:

$$
\begin{align*}
& \dot{\bar{q}}=\frac{\partial H_{0}}{\partial \bar{p}}+\frac{1}{2} \frac{\partial^{3} H_{0}}{\partial \bar{q}^{2} \partial \bar{p}}\left\langle\zeta^{2}\right\rangle+\frac{\partial^{3} H_{0}}{\partial \bar{q} \partial \bar{p}^{2}}\langle\zeta \pi\rangle+\frac{1}{2} \frac{\partial^{3} H_{0}}{\partial \bar{p}^{3}}\left\langle\pi^{2}\right\rangle \tag{7.88}\\
& \dot{\bar{p}}=-\frac{\partial H_{0}}{\partial \bar{q}}-\frac{1}{2} \frac{\partial^{3} H_{0}}{\partial \bar{q}^{3}}\left\langle\zeta^{2}\right\rangle-\frac{\partial^{3} H_{0}}{\partial \bar{q}^{2} \partial \bar{p}}\langle\zeta \pi\rangle-\frac{1}{2} \frac{\partial^{3} H_{0}}{\partial \bar{q} \partial \bar{p}^{2}}\left\langle\pi^{2}\right\rangle-\frac{\partial^{2} V}{\partial \bar{q}^{2}}\langle\zeta \sin (\omega t+\delta)\rangle . \tag{7.89}
\end{align*}
$$

The fast degrees of freedom obey

$$
\begin{align*}
& \dot{\zeta}=\frac{\partial^{2} H_{0}}{\partial \bar{q} \partial \bar{p}} \zeta+\frac{\partial^{2} H_{0}}{\partial \bar{p}^{2}} \pi \tag{7.90}\\
& \dot{\pi}=-\frac{\partial^{2} H_{0}}{\partial \bar{q}^{2}} \zeta-\frac{\partial^{2} H_{0}}{\partial \bar{q} \partial \bar{p}} \pi-\frac{\partial V}{\partial q} \sin (\omega t+\delta) . \tag{7.91}
\end{align*}
$$

Let us analyze the coupled equations ${ }^{3}$

$$
\begin{align*}
\dot{\zeta} & =A \zeta+B \pi \tag{7.92}\\
\dot{\pi} & =-C \zeta-A \pi+F e^{-i \omega t} \tag{7.93}
\end{align*}
$$

The solution is of the form

$$
\begin{equation*}
\binom{\zeta}{\pi}=\binom{\alpha}{\beta} e^{-i \omega t} \tag{7.94}
\end{equation*}
$$

Plugging in, we find

$$
\begin{align*}
& \alpha=\frac{B F}{B C-A^{2}-\omega^{2}}=-\frac{B F}{\omega^{2}}+\mathcal{O}\left(\omega^{-4}\right) \tag{7.95}\\
& \beta=-\frac{(A+i \omega) F}{B C-A^{2}-\omega^{2}}=\frac{i F}{\omega}+\mathcal{O}\left(\omega^{-3}\right) . \tag{7.96}
\end{align*}
$$

Taking the real part, and restoring the phase shift δ, we have

$$
\begin{align*}
& \zeta(t)=\frac{-B F}{\omega^{2}} \sin (\omega t+\delta)=\frac{1}{\omega^{2}} \frac{\partial V}{\partial \bar{q}} \frac{\partial^{2} H_{0}}{\partial \bar{p}^{2}} \sin (\omega t+\delta) \tag{7.97}\\
& \pi(t)=-\frac{F}{\omega} \cos (\omega t+\delta)=\frac{1}{\omega} \frac{\partial V}{\partial \bar{q}} \cos (\omega t+\delta) \tag{7.98}
\end{align*}
$$

The desired averages, to lowest order, are thus

$$
\begin{align*}
\left\langle\zeta^{2}\right\rangle & =\frac{1}{2 \omega^{4}}\left(\frac{\partial V}{\partial \bar{q}}\right)^{2}\left(\frac{\partial^{2} H_{0}}{\partial \bar{p}^{2}}\right)^{2} \tag{7.99}\\
\left\langle\pi^{2}\right\rangle & =\frac{1}{2 \omega^{2}}\left(\frac{\partial V}{\partial \bar{q}}\right)^{2} \tag{7.100}\\
\langle\zeta \sin (\omega t+\delta)\rangle & =\frac{1}{2 \omega^{2}} \frac{\partial V}{\partial \bar{q}} \frac{\partial^{2} H_{0}}{\partial \bar{p}^{2}}, \tag{7.101}
\end{align*}
$$

[^2]along with $\langle\zeta \pi\rangle=0$.
Finally, we substitute the averages into the equations of motion for the slow variables \bar{q} and \bar{p}, resulting in the time-independent effective Hamiltonian
\[

$$
\begin{equation*}
K(\bar{q}, \bar{p})=H_{0}(\bar{q}, \bar{p})+\frac{1}{4 \omega^{2}} \frac{\partial^{2} H_{0}}{\partial \bar{p}^{2}}\left(\frac{\partial V}{\partial \bar{q}}\right)^{2}, \tag{7.102}
\end{equation*}
$$

\]

and the equations of motion

$$
\begin{equation*}
\dot{\bar{q}}=\frac{\partial K}{\partial \bar{p}} \quad, \quad \dot{\bar{p}}=-\frac{\partial K}{\partial \bar{q}} . \tag{7.103}
\end{equation*}
$$

7.5.1 Example : pendulum with oscillating support

Consider a pendulum with a vertically oscillating point of support. The coordinates of the pendulum bob are

$$
\begin{equation*}
x=\ell \sin \theta \quad, \quad y=a(t)-\ell \cos \theta . \tag{7.104}
\end{equation*}
$$

The Lagrangian is easily obtained:

$$
\begin{align*}
& L=\frac{1}{2} m \ell^{2} \dot{\theta}^{2}+m \ell \dot{a} \dot{\theta} \sin \theta+m g \ell \cos \theta+\frac{1}{2} m \dot{a}^{2}-m g a \tag{7.105}\\
& \text { these may } \tag{7.106}\\
&=\frac{1}{2} m \ell^{2} \dot{\theta}^{2}+m(g+\ddot{a}) \ell \cos \theta+\overbrace{\frac{1}{2} m \dot{a}^{2}-m g a-\frac{d}{d t}(m \ell \dot{a} \sin \theta)}^{\text {be dropped }}
\end{align*} .
$$

Thus we may take the Lagrangian to be

$$
\begin{equation*}
\bar{L}=\frac{1}{2} m \ell^{2} \dot{\theta}^{2}+m(g+\ddot{a}) \ell \cos \theta, \tag{7.107}
\end{equation*}
$$

from which we derive the Hamiltonian

$$
\begin{align*}
H\left(\theta, p_{\theta}, t\right) & =\frac{p_{\theta}^{2}}{2 m \ell^{2}}-m g \ell \cos \theta-m \ell \ddot{a} \cos \theta \tag{7.108}\\
& =H_{0}\left(\theta, p_{\theta}, t\right)+V_{1}(\theta) \sin \omega t \tag{7.109}
\end{align*}
$$

We have assumed $a(t)=a_{0} \sin \omega t$, so

$$
\begin{equation*}
V_{1}(\theta)=m \ell a_{0} \omega^{2} \cos \theta . \tag{7.110}
\end{equation*}
$$

The effective Hamiltonian, per eqn. 7.102, is

$$
\begin{equation*}
K\left(\bar{\theta}, \bar{p}_{\theta}\right)=\frac{\bar{p}_{\theta}}{2 m \ell^{2}}-m g \ell \cos \bar{\theta}+\frac{1}{4} m a_{0}^{2} \omega^{2} \sin ^{2} \bar{\theta} . \tag{7.111}
\end{equation*}
$$

Let's define the dimensionless parameter

$$
\begin{equation*}
\epsilon \equiv \frac{2 g \ell}{\omega^{2} a_{0}^{2}} . \tag{7.112}
\end{equation*}
$$

Figure 7.3: Dimensionless potential $v(\theta)$ for $\epsilon=1.5$ (black curve) and $\epsilon=0.5$ (blue curve).

The slow variable $\bar{\theta}$ executes motion in the effective potential $V_{\text {eff }}(\bar{\theta})=m g \ell v(\bar{\theta})$, with

$$
\begin{equation*}
v(\bar{\theta})=-\cos \bar{\theta}+\frac{1}{2 \epsilon} \sin ^{2} \bar{\theta} \tag{7.113}
\end{equation*}
$$

Differentiating, and dropping the bar on θ, we find that $V_{\text {eff }}(\theta)$ is stationary when

$$
\begin{equation*}
v^{\prime}(\theta)=0 \Rightarrow \sin \theta \cos \theta=-\epsilon \sin \theta . \tag{7.114}
\end{equation*}
$$

Thus, $\theta=0$ and $\theta=\pi$, where $\sin \theta=0$, are equilibria. When $\epsilon<1$ (note $\epsilon>0$ always), there are two new solutions, given by the roots of $\cos \theta=-\epsilon$.

To assess stability of these equilibria, we compute the second derivative:

$$
\begin{equation*}
v^{\prime \prime}(\theta)=\cos \theta+\frac{1}{\epsilon} \cos 2 \theta . \tag{7.115}
\end{equation*}
$$

From this, we see that $\theta=0$ is stable (i.e. $v^{\prime \prime}(\theta=0)>0$) always, but $\theta=\pi$ is stable for $\epsilon<1$ and unstable for $\epsilon>1$. When $\epsilon<1$, two new solutions appear, at $\cos \theta=-\epsilon$, for which

$$
\begin{equation*}
v^{\prime \prime}\left(\cos ^{-1}(-\epsilon)\right)=\epsilon-\frac{1}{\epsilon} \tag{7.116}
\end{equation*}
$$

which is always negative since $\epsilon<1$ in order for these equilibria to exist. The situation is sketched in fig. 7.3, showing $v(\theta)$ for two representative values of the parameter ϵ. For $\epsilon>1$, the equilibrium at $\theta=\pi$ is unstable, but as ϵ decreases, a subcritical pitchfork bifurcation is encountered at $\epsilon=1$, and $\theta=\pi$ becomes stable, while the outlying $\theta=\cos ^{-1}(-\epsilon)$ solutions are unstable.

7.6 Field Theory: Systems with Several Independent Variables

Suppose $\phi_{a}(\boldsymbol{x})$ depends on several independent variables: $\left\{x^{1}, x^{2}, \ldots, x^{n}\right\}$. Furthermore, suppose

$$
\begin{equation*}
S\left[\left\{\phi_{a}(\boldsymbol{x})\right]=\int_{\Omega} d \boldsymbol{x} \mathcal{L}\left(\phi_{a} \partial_{\mu} \phi_{a}, \boldsymbol{x}\right)\right. \tag{7.117}
\end{equation*}
$$

i.e. the Lagrangian density \mathcal{L} is a function of the fields ϕ_{a} and their partial derivatives $\partial \phi_{a} / \partial x^{\mu}$. Here Ω is a region in R^{K}. Then the first variation of S is

$$
\begin{align*}
\delta S & =\int_{\Omega} d \boldsymbol{x}\left\{\frac{\partial \mathcal{L}}{\partial \phi_{a}} \delta \phi_{a}+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \frac{\partial \delta \phi_{a}}{\partial x^{\mu}}\right\} \\
& =\oint_{\partial \Omega} d \Sigma n^{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \delta \phi_{a}-\int_{\Omega} d x\left\{\frac{\partial \mathcal{L}}{\partial \phi_{a}}-\frac{\partial}{\partial x^{\mu}}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)}\right)\right\} \delta \phi_{a} \tag{7.118}
\end{align*}
$$

where $\partial \Omega$ is the ($n-1$)-dimensional boundary of $\Omega, d \Sigma$ is the differential surface area, and n^{μ} is the unit normal. If we demand $\partial \mathcal{L} /\left.\partial\left(\partial_{\mu} \phi_{a}\right)\right|_{\partial \Omega}=0$ of $\left.\delta \phi_{a}\right|_{\partial \Omega}=0$, the surface term vanishes, and we conclude

$$
\begin{equation*}
\frac{\delta S}{\delta \phi_{a}(\boldsymbol{x})}=\frac{\partial \mathcal{L}}{\partial \phi_{a}}-\frac{\partial}{\partial x^{\mu}}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)}\right) \tag{7.119}
\end{equation*}
$$

As an example, consider the case of a stretched string of linear mass density μ and tension τ. The action is a functional of the height $y(x, t)$, where the coordinate along the string, x, and time, t, are the two independent variables. The Lagrangian density is

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \mu\left(\frac{\partial y}{\partial t}\right)^{2}-\frac{1}{2} \tau\left(\frac{\partial y}{\partial x}\right)^{2} \tag{7.120}
\end{equation*}
$$

whence the Euler-Lagrange equations are

$$
\begin{align*}
0=\frac{\delta S}{\delta y(x, t)} & =-\frac{\partial}{\partial x}\left(\frac{\partial \mathcal{L}}{\partial y^{\prime}}\right)-\frac{\partial}{\partial t}\left(\frac{\partial \mathcal{L}}{\partial \dot{y}}\right) \\
& =\tau \frac{\partial^{2} y}{\partial x^{2}}-\mu \frac{\partial^{2} y}{\partial t^{2}} \tag{7.121}
\end{align*}
$$

where $y^{\prime}=\frac{\partial y}{\partial x}$ and $\dot{y}=\frac{\partial y}{\partial t}$. Thus, $\mu \ddot{y}=\tau y^{\prime \prime}$, which is the Helmholtz equation. We've assumed boundary conditions where $\delta y\left(x_{a}, t\right)=\delta y\left(x_{b}, t\right)=\delta y\left(x, t_{a}\right)=\delta y\left(x, t_{b}\right)=0$.
The Lagrangian density for an electromagnetic field with sources is

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{16 \pi} F_{\mu \nu} F^{\mu \nu}-\frac{1}{c} j_{\mu} A^{\mu} . \tag{7.122}
\end{equation*}
$$

The equations of motion are then

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial A^{\nu}}-\frac{\partial}{\partial x^{\nu}}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial^{\mu} A^{\nu}\right)}\right)=0 \quad \Rightarrow \quad \partial_{\mu} F^{\mu \nu}=\frac{4 \pi}{c} j^{\nu} \tag{7.123}
\end{equation*}
$$

which are Maxwell's equations.
Recall the result of Noether's theorem for mechanical systems:

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{\sigma}} \frac{\partial \tilde{q}_{\sigma}}{\partial \zeta}\right)_{\zeta=0}=0 \tag{7.124}
\end{equation*}
$$

where $\tilde{q}_{\sigma}=\tilde{q}_{\sigma}(q, \zeta)$ is a one-parameter (ζ) family of transformations of the generalized coordinates which leaves L invariant. We generalize to field theory by replacing

$$
\begin{equation*}
q_{\sigma}(t) \longrightarrow \phi_{a}(\boldsymbol{x}, t), \tag{7.125}
\end{equation*}
$$

where $\left\{\phi_{a}(\boldsymbol{x}, t)\right\}$ are a set of fields, which are functions of the independent variables $\{x, y, z, t\}$. We will adopt covariant relativistic notation and write for four-vector $x^{\mu}=(c t, x, y, z)$. The generalization of $d \Lambda / d t=0$ is

$$
\begin{equation*}
\frac{\partial}{\partial x^{\mu}}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \frac{\partial \tilde{\phi}_{a}}{\partial \zeta}\right)_{\zeta=0}=0 \tag{7.126}
\end{equation*}
$$

where there is an implied sum on both μ and a. We can write this as $\partial_{\mu} J^{\mu}=0$, where

$$
\begin{equation*}
\left.J^{\mu} \equiv \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \frac{\partial \tilde{\phi}_{a}}{\partial \zeta}\right|_{\zeta=0} \tag{7.127}
\end{equation*}
$$

We call $\Lambda=J^{0} / c$ the total charge. If we assume $\boldsymbol{J}=0$ at the spatial boundaries of our system, then integrating the conservation law $\partial_{\mu} J^{\mu}$ over the spatial region Ω gives

$$
\begin{equation*}
\frac{d \Lambda}{d t}=\int_{\Omega} d^{3} x \partial_{0} J^{0}=-\int_{\Omega} d^{3} x \nabla \cdot \boldsymbol{J}=-\oint_{\partial \Omega} d \Sigma \hat{\boldsymbol{n}} \cdot \boldsymbol{J}=0 \tag{7.128}
\end{equation*}
$$

assuming $\boldsymbol{J}=0$ at the boundary $\partial \Omega$.
As an example, consider the case of a complex scalar field, with Lagrangian density ${ }^{4}$

$$
\begin{equation*}
\mathcal{L}\left(\psi,, \psi^{*}, \partial_{\mu} \psi, \partial_{\mu} \psi^{*}\right)=\frac{1}{2} K\left(\partial_{\mu} \psi^{*}\right)\left(\partial^{\mu} \psi\right)-U\left(\psi^{*} \psi\right) . \tag{7.129}
\end{equation*}
$$

This is invariant under the transformation $\psi \rightarrow e^{i \zeta} \psi, \psi^{*} \rightarrow e^{-i \zeta} \psi^{*}$. Thus,

$$
\begin{equation*}
\frac{\partial \tilde{\psi}}{\partial \zeta}=i e^{i \zeta} \psi \quad, \quad \frac{\partial \tilde{\psi}^{*}}{\partial \zeta}=-i e^{-i \zeta} \psi^{*} \tag{7.130}
\end{equation*}
$$

[^3]and, summing over both ψ and ψ^{*} fields, we have
\[

$$
\begin{align*}
J^{\mu} & =\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi\right)} \cdot(i \psi)+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi^{*}\right)} \cdot\left(-i \psi^{*}\right) \\
& =\frac{K}{2 i}\left(\psi^{*} \partial^{\mu} \psi-\psi \partial^{\mu} \psi^{*}\right) . \tag{7.131}
\end{align*}
$$
\]

The potential, which depends on $|\psi|^{2}$, is independent of ζ. Hence, this form of conserved 4 -current is valid for an entire class of potentials.

7.6.1 Gross-Pitaevskii model

As one final example of a field theory, consider the Gross-Pitaevskii model, with

$$
\begin{equation*}
\mathcal{L}=i \hbar \psi^{*} \frac{\partial \psi}{\partial t}-\frac{\hbar^{2}}{2 m} \boldsymbol{\nabla} \psi^{*} \cdot \boldsymbol{\nabla} \psi-g\left(|\psi|^{2}-n_{0}\right)^{2} . \tag{7.132}
\end{equation*}
$$

This describes a Bose fluid with repulsive short-ranged interactions. Here $\psi(\boldsymbol{x}, t)$ is again a complex scalar field, and ψ^{*} is its complex conjugate. Using the Leibniz rule, we have

$$
\begin{align*}
\delta S\left[\psi^{*}, \psi\right]= & S\left[\psi^{*}+\delta \psi^{*}, \psi+\delta \psi\right] \\
=\int d t \int d^{d} x\{ & i \hbar \psi^{*} \frac{\partial \delta \psi}{\partial t}+i \hbar \delta \psi^{*} \frac{\partial \psi}{\partial t}-\frac{\hbar^{2}}{2 m} \nabla \psi^{*} \cdot \boldsymbol{\nabla} \delta \psi-\frac{\hbar^{2}}{2 m} \boldsymbol{\nabla} \delta \psi^{*} \cdot \boldsymbol{\nabla} \psi \\
& \left.-2 g\left(|\psi|^{2}-n_{0}\right)\left(\psi^{*} \delta \psi+\psi \delta \psi^{*}\right)\right\} \\
=\int d t \int d^{d} x\{ & {\left[-i \hbar \frac{\partial \psi^{*}}{\partial t}+\frac{\hbar^{2}}{2 m} \nabla^{2} \psi^{*}-2 g\left(|\psi|^{2}-n_{0}\right) \psi^{*}\right] \delta \psi } \\
& \left.+\left[i \hbar \frac{\partial \psi}{\partial t}+\frac{\hbar^{2}}{2 m} \nabla^{2} \psi-2 g\left(|\psi|^{2}-n_{0}\right) \psi\right] \delta \psi^{*}\right\} \tag{7.133}
\end{align*}
$$

where we have integrated by parts where necessary and discarded the boundary terms. Extremizing $S\left[\psi^{*}, \psi\right]$ therefore results in the nonlinear Schrödinger equation (NLSE),

$$
\begin{equation*}
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+2 g\left(|\psi|^{2}-n_{0}\right) \psi \tag{7.134}
\end{equation*}
$$

as well as its complex conjugate,

$$
\begin{equation*}
-i \hbar \frac{\partial \psi^{*}}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi^{*}+2 g\left(|\psi|^{2}-n_{0}\right) \psi^{*} . \tag{7.135}
\end{equation*}
$$

Note that these equations are indeed the Euler-Lagrange equations:

$$
\begin{align*}
& \frac{\delta S}{\delta \psi}=\frac{\partial \mathcal{L}}{\partial \psi}-\frac{\partial}{\partial x^{\mu}}\left(\frac{\partial \mathcal{L}}{\partial \partial_{\mu} \psi}\right) \tag{7.136}\\
& \frac{\delta S}{\delta \psi^{*}}=\frac{\partial \mathcal{L}}{\partial \psi^{*}}-\frac{\partial}{\partial x^{\mu}}\left(\frac{\partial \mathcal{L}}{\partial \partial_{\mu} \psi^{*}}\right) \tag{7.137}
\end{align*}
$$

with $x^{\mu}=(t, \boldsymbol{x})^{5}$ Plugging in

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \psi}=-2 g\left(|\psi|^{2}-n_{0}\right) \psi^{*} \quad, \quad \frac{\partial \mathcal{L}}{\partial \partial_{t} \psi}=i \hbar \psi^{*} \quad, \quad \frac{\partial \mathcal{L}}{\partial \boldsymbol{\nabla} \psi}=-\frac{\hbar^{2}}{2 m} \nabla \psi^{*} \tag{7.138}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \psi^{*}}=i \hbar \psi-2 g\left(|\psi|^{2}-n_{0}\right) \psi \quad, \quad \frac{\partial \mathcal{L}}{\partial \partial_{t} \psi^{*}}=0 \quad, \quad \frac{\partial \mathcal{L}}{\partial \boldsymbol{\nabla} \psi^{*}}=-\frac{\hbar^{2}}{2 m} \nabla \psi, \tag{7.139}
\end{equation*}
$$

we recover the NLSE and its conjugate.
The Gross-Pitaevskii model also possesses a U(1) invariance, under

$$
\begin{equation*}
\psi(\boldsymbol{x}, t) \rightarrow \tilde{\psi}(\boldsymbol{x}, t)=e^{i \zeta} \psi(\boldsymbol{x}, t) \quad, \quad \psi^{*}(\boldsymbol{x}, t) \rightarrow \tilde{\psi}^{*}(\boldsymbol{x}, t)=e^{-i \zeta} \psi^{*}(\boldsymbol{x}, t) . \tag{7.140}
\end{equation*}
$$

Thus, the conserved Noether current is then

$$
\begin{align*}
J^{\mu} & =\left.\frac{\partial \mathcal{L}}{\partial \partial_{\mu} \psi} \frac{\partial \tilde{\psi}}{\partial \zeta}\right|_{\zeta=0}+\left.\frac{\partial \mathcal{L}}{\partial \partial_{\mu} \psi^{*}} \frac{\partial \tilde{\psi}^{*}}{\partial \zeta}\right|_{\zeta=0} \\
J^{0} & =-\hbar|\psi|^{2} \tag{7.141}\\
\boldsymbol{J} & =-\frac{\hbar^{2}}{2 i m}\left(\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right) . \tag{7.142}
\end{align*}
$$

Dividing out by \hbar, taking $J^{0} \equiv-\hbar \rho$ and $\boldsymbol{J} \equiv-\hbar \boldsymbol{j}$, we obtain the continuity equation,

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\nabla \cdot j=0 \tag{7.143}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho=|\psi|^{2} \quad, \quad j=\frac{\hbar}{2 i m}\left(\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right) . \tag{7.144}
\end{equation*}
$$

are the particle density and the particle current, respectively.

[^4]
[^0]: ${ }^{1}$ Indeed, we should be demanding that S only change by a function of the endpoint values.

[^1]: ${ }^{2}$ A homogeneous function of degree k satisfies $f\left(\lambda x_{1}, \ldots, \lambda x_{n}\right)=\lambda^{k} f\left(x_{1}, \ldots, x_{n}\right)$. It is then easy to prove Euler's theorem, $\sum_{i=1}^{n} x_{i} \frac{\partial f}{\partial x_{i}}=k f$.

[^2]: ${ }^{3}$ With real coefficients A, B, and C, one can always take the real part to recover the fast variable equations of motion.

[^3]: ${ }^{4}$ We raise and lower indices using the Minkowski metric $g_{\mu \nu}=\operatorname{diag}(+,-,-,-)$.

[^4]: ${ }^{5}$ In the nonrelativistic case, there is no utility in defining $x^{0}=c t$, so we simply define $x^{0}=t$.

