
Chapter 7

Noether’s Theorem

7.1 Continuous Symmetry Implies Conserved Charges

Consider a particle moving in two dimensions under the influence of an external potential
U(r). The potential is a function only of the magnitude of the vector r. The Lagrangian is
then

L = T − U = 1
2m
(
ṙ2 + r2 φ̇2

)
− U(r) , (7.1)

where we have chosen generalized coordinates (r, φ). The momentum conjugate to φ is

pφ = mr2 φ̇. The generalized force Fφ clearly vanishes, since L does not depend on the
coordinate φ. (One says that L is ‘cyclic’ in φ.) Thus, although r = r(t) and φ = φ(t)

will in general be time-dependent, the combination pφ = mr2 φ̇ is constant. This is the
conserved angular momentum about the ẑ axis.

If instead the particle moved in a potential U(y), independent of x, then writing

L = 1
2m
(
ẋ2 + ẏ2

)
− U(y) , (7.2)

we have that the momentum px = ∂L/∂ẋ = mẋ is conserved, because the generalized force

Fx = ∂L/∂x = 0 vanishes. This situation pertains in a uniform gravitational field, with
U(x, y) = mgy, independent of x. The horizontal component of momentum is conserved.

In general, whenever the system exhibits a continuous symmetry , there is an associated
conserved charge. (The terminology ‘charge’ is from field theory.) Indeed, this is a rigorous
result, known as Noether’s Theorem. Consider a one-parameter family of transformations,

qσ −→ q̃σ(q, ζ) , (7.3)

where ζ is the continuous parameter. Suppose further (without loss of generality) that at
ζ = 0 this transformation is the identity, i.e. q̃σ(q, 0) = qσ. The transformation may be
nonlinear in the generalized coordinates. Suppose further that the Lagrangian L s invariant
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under the replacement q → q̃. Then we must have
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. (7.4)

Thus, there is an associated conserved charge

Λ =
∂L

∂q̇σ

∂q̃σ
∂ζ

∣
∣
∣
∣
∣
ζ=0

. (7.5)

7.1.1 Examples of one-parameter families of transformations

Consider the Lagrangian

L = 1
2m(ẋ2 + ẏ2) − U

(√

x2 + y2
)
. (7.6)

In two-dimensional polar coordinates, we have

L = 1
2m(ṙ2 + r2φ̇2) − U(r) , (7.7)

and we may now define

r̃(ζ) = r (7.8)

φ̃(ζ) = φ+ ζ . (7.9)

Note that r̃(0) = r and φ̃(0) = φ, i.e. the transformation is the identity when ζ = 0. We
now have

Λ =
∑

σ

∂L

∂q̇σ

∂q̃σ
∂ζ

∣
∣
∣
∣
∣
ζ=0

=
∂L

∂ṙ
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∣
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∣
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= mr2φ̇ . (7.10)

Another way to derive the same result which is somewhat instructive is to work out the
transformation in Cartesian coordinates. We then have

x̃(ζ) = x cos ζ − y sin ζ (7.11)

ỹ(ζ) = x sin ζ + y cos ζ . (7.12)

Thus,
∂x̃

∂ζ
= −y(ζ) ,

∂ỹ

∂ζ
= x(ζ) (7.13)
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and

Λ =
∂L

∂ẋ

∂x̃

∂ζ

∣
∣
∣
∣
∣
ζ=0

+
∂L

∂ẏ

∂ỹ

∂ζ

∣
∣
∣
∣
∣
ζ=0

= m(xẏ − yẋ) . (7.14)

But
m(xẏ − yẋ) = mẑ · r × ṙ = mr2φ̇ . (7.15)

As another example, consider the potential

U(ρ, φ, z) = V (ρ, aφ+ z) , (7.16)

where (ρ, φ, z) are cylindrical coordinates for a particle of mass m, and where a is a constant
with dimensions of length. The Lagrangian is

1
2m
(
ρ̇2 + ρ2φ̇2 + ẋ2

)
− V (ρ, aφ+ z) . (7.17)

This model possesses a helical symmetry, with a one-parameter family

ρ̃(ζ) = ρ (7.18)

φ̃(ζ) = φ+ ζ (7.19)

z̃(ζ) = z − ζa . (7.20)

Note that
aφ̃+ z̃ = aφ+ z , (7.21)

so the potential energy, and the Lagrangian as well, is invariant under this one-parameter
family of transformations. The conserved charge for this symmetry is

Λ =
∂L

∂ρ̇
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∂ζ

∣
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∣
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+
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∂ż
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∣
∣
∣
∣
∣
ζ=0

= mρ2φ̇−maż . (7.22)

We can check explicitly that Λ is conserved, using the equations of motion

d

dt

∂L

∂φ̇
=

d

dt

(
mρ2φ̇

)
=
∂L

∂φ
= −a∂V

∂z
(7.23)

d

dt

∂L

∂φ̇
=

d

dt
(mż) =

∂L

∂φ
= −∂V

∂z
. (7.24)

Thus,

Λ̇ =
d

dt

(
mρ2φ̇

)
− a

d

dt
(mż) = 0 . (7.25)

7.2 Conservation of Linear and Angular Momentum

Suppose that the Lagrangian of a mechanical system is invariant under a uniform translation
of all particles in the n̂ direction. Then our one-parameter family of transformations is given
by

x̃a = xa + ζ n̂ , (7.26)
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and the associated conserved Noether charge is

Λ =
∑

a

∂L

∂ẋa
· n̂ = n̂ · P , (7.27)

where P =
∑

a pa is the total momentum of the system.

If the Lagrangian of a mechanical system is invariant under rotations about an axis n̂, then

x̃a = R(ζ, n̂)xa

= xa + ζ n̂ × xa + O(ζ2) , (7.28)

where we have expanded the rotation matrix R(ζ, n̂) in powers of ζ. The conserved Noether
charge associated with this symmetry is

Λ =
∑

a

∂L

∂ẋa
· n̂ × xa = n̂ ·

∑

a

xa × pa = n̂ · L , (7.29)

where L is the total angular momentum of the system.

7.3 Advanced Discussion : Invariance of L vs. Invariance of

S

Observant readers might object that demanding invariance of L is too strict. We should
instead be demanding invariance of the action S1. Suppose S is invariant under

t→ t̃(q, t, ζ) (7.30)

qσ(t) → q̃σ(q, t, ζ) . (7.31)

Then invariance of S means

S =

tb∫

ta

dtL(q, q̇, t) =

t̃b∫

t̃a

dtL(q̃, ˙̃q, t) . (7.32)

Note that t is a dummy variable of integration, so it doesn’t matter whether we call it t
or t̃. The endpoints of the integral, however, do change under the transformation. Now
consider an infinitesimal transformation, for which δt = t̃− t and δq = q̃

(
t̃
)
− q(t) are both

small. Invariance of S means

S =

t
b∫

ta

dtL(q, q̇, t) =

t
b
+δt

b∫

ta+δta

dt
{

L(q, q̇, t) +
∂L

∂qσ
δ̄qσ +

∂L

∂q̇σ
δ̄q̇σ + . . .

}

, (7.33)

1Indeed, we should be demanding that S only change by a function of the endpoint values.
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where

δ̄qσ(t) ≡ q̃σ(t) − qσ(t)

= q̃σ
(
t̃
)
− q̃σ

(
t̃
)

+ q̃σ(t) − qσ(t)

= δqσ − q̇σ δt + O(δq δt) (7.34)

Subtracting the top line from the bottom, we obtain

0 = Lb δtb − La δta +
∂L

∂q̇σ

∣
∣
∣
∣
b

δ̄qσ,b −
∂L

∂q̇σ

∣
∣
∣
∣
a

δ̄qσ,a +

t
b
+δt

b∫

ta+δta

dt

{

∂L

∂qσ
− d

dt

(
∂L

∂q̇σ

)}

δ̄q(t)

=

t
b∫

ta

dt
d

dt

{(

L− ∂L

∂q̇σ
q̇σ

)

δt +
∂L

∂q̇σ
δqσ

}

. (7.35)

Thus, if ζ ≡ δζ is infinitesimal, and

δt = A(q, t) δζ (7.36)

δqσ = Bσ(q, t) δζ , (7.37)

then the conserved charge is

Λ =

(

L− ∂L

∂q̇σ
q̇σ

)

A(q, t) +
∂L

∂q̇σ
Bσ(q, t)

= −H(q, p, t)A(q, t) + pσ Bσ(q, t) . (7.38)

Thus, when A = 0, we recover our earlier results, obtained by assuming invariance of L.
Note that conservation of H follows from time translation invariance: t → t+ ζ, for which
A = 1 and Bσ = 0. Here we have written

H = pσ q̇σ − L , (7.39)

and expressed it in terms of the momenta pσ, the coordinates qσ, and time t. H is called
the Hamiltonian.

7.3.1 The Hamiltonian

The Lagrangian is a function of generalized coordinates, velocities, and time. The canonical
momentum conjugate to the generalized coordinate qσ is

pσ =
∂L

∂q̇σ
. (7.40)
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The Hamiltonian is a function of coordinates, momenta, and time. It is defined as the
Legendre transform of L:

H(q, p, t) =
∑

σ

pσ q̇σ − L . (7.41)

Let’s examine the differential of H:

dH =
∑

σ

(

q̇σ dpσ + pσ dq̇σ − ∂L

∂qσ
dqσ − ∂L

∂q̇σ
dq̇σ

)

− ∂L

∂t
dt

=
∑

σ

(

q̇σ dpσ − ∂L

∂qσ
dqσ

)

− ∂L

∂t
dt , (7.42)

where we have invoked the definition of pσ to cancel the coefficients of dq̇σ. Since ṗσ =
∂L/∂qσ, we have Hamilton’s equations of motion,

q̇σ =
∂H

∂pσ
, ṗσ = −∂H

∂qσ
. (7.43)

Thus, we can write

dH =
∑

σ

(

q̇σ dpσ − ṗσ dqσ

)

− ∂L

∂t
dt . (7.44)

Dividing by dt, we obtain
dH

dt
= −∂L

∂t
, (7.45)

which says that the Hamiltonian is conserved (i.e. it does not change with time) whenever
there is no explicit time dependence to L.

Example #1 : For a simple d = 1 system with L = 1
2mẋ

2 − U(x), we have p = mẋ and

H = p ẋ− L = 1
2mẋ

2 + U(x) =
p2

2m
+ U(x) . (7.46)

Example #2 : Consider now the mass point – wedge system analyzed above, with

L = 1
2(M +m)Ẋ2 +mẊẋ+ 1

2m (1 + tan2α) ẋ2 −mg x tanα , (7.47)

The canonical momenta are

P =
∂L

∂Ẋ
= (M +m) Ẋ +mẋ (7.48)

p =
∂L

∂ẋ
= mẊ +m (1 + tan2α) ẋ . (7.49)

The Hamiltonian is given by

H = P Ẋ + p ẋ− L

= 1
2(M +m)Ẋ2 +mẊẋ+ 1

2m (1 + tan2α) ẋ2 +mg x tanα . (7.50)
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However, this is not quite H, since H = H(X,x, P, p, t) must be expressed in terms of the
coordinates and the momenta and not the coordinates and velocities. So we must eliminate
Ẋ and ẋ in favor of P and p. We do this by inverting the relations

(
P
p

)

=

(
M +m m
m m (1 + tan2α)

)(
Ẋ
ẋ

)

(7.51)

to obtain
(
Ẋ
ẋ

)

=
1

m
(
M + (M +m) tan2α

)

(
m (1 + tan2α) −m

−m M +m

)(
P
p

)

. (7.52)

Substituting into 7.50, we obtain

H =
M +m

2m

P 2 cos2α

M +m sin2α
− Pp cos2α

M +m sin2α
+

p2

2 (M +m sin2α)
+mg x tanα . (7.53)

Notice that Ṗ = 0 since ∂L
∂X

= 0. P is the total horizontal momentum of the system (wedge
plus particle) and it is conserved.

7.3.2 Is H = T + U ?

The most general form of the kinetic energy is

T = T2 + T1 + T0

= 1
2T

(2)
σσ′(q, t) q̇σ q̇σ′ + T (1)

σ (q, t) q̇σ + T (0)(q, t) , (7.54)

where T (n)(q, q̇, t) is homogeneous of degree n in the velocities2. We assume a potential
energy of the form

U = U1 + U0

= U (1)
σ (q, t) q̇σ + U (0)(q, t) , (7.55)

which allows for velocity-dependent forces, as we have with charged particles moving in an
electromagnetic field. The Lagrangian is then

L = T −U = 1
2T

(2)
σσ′(q, t) q̇σ q̇σ′ + T (1)

σ (q, t) q̇σ + T (0)(q, t)−U (1)
σ (q, t) q̇σ −U (0)(q, t) . (7.56)

We have assumed U(q, t) is velocity-independent, but the above form for L = T −U is quite
general. (E.g. any velocity-dependence in U can be absorbed into the Bσ q̇σ term.) The
canonical momentum conjugate to qσ is

pσ =
∂L

∂q̇σ
= T

(2)
σσ′ q̇σ′ + T (1)

σ (q, t) − U (1)
σ (q, t) (7.57)

2A homogeneous function of degree k satisfies f(λx1, . . . , λxn) = λkf(x1, . . . , xn). It is then easy to prove
Euler’s theorem,

Pn

i=1
xi

∂f

∂xi

= kf .
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which is inverted to give

q̇σ = T
(2)
σσ′

−1 (

pσ′ − T
(1)
σ′ + U

(1)
σ′

)

. (7.58)

The Hamiltonian is then

H = pσ q̇σ − L

= 1
2 T

(2)
σσ′

−1(

pσ − T (1)
σ + U (1)

σ

)(

pσ′ − T
(1)
σ′ + U

(1)
σ′

)

− T0 + U0 (7.59)

= T2 − T0 + U0 . (7.60)

If T0, T1, and U1 vanish, i.e. if T (q, q̇, t) is a homogeneous function of degree two in the
generalized velocities, and U(q, t) is velocity-independent, then H = T +U . But if T0 or T1

is nonzero, or the potential is velocity-dependent, then H 6= T + U .

7.3.3 Example: A bead on a rotating hoop

Consider a bead of mass m constrained to move along a hoop of radius a. The hoop is
further constrained to rotate with angular velocity ω about the ẑ-axis, as shown in Fig.
7.1.

The most convenient set of generalized coordinates is spherical polar (r, θ, φ), in which case

T = 1
2m
(
ṙ2 + r2 θ̇2 + r2 sin2 θ φ̇2

)

= 1
2ma

2
(
θ̇2 + ω2 sin2 θ

)
. (7.61)

Thus, T2 = 1
2ma

2θ̇2 and T0 = 1
2ma

2ω2 sin2 θ. The potential energy is U(θ) = mga(1−cos θ).

The momentum conjugate to θ is pθ = ma2θ̇, and thus

H(θ, p) = T2 − T0 + U

= 1
2ma

2θ̇2 − 1
2ma

2ω2 sin2 θ +mga(1 − cos θ)

=
p2

θ

2ma2
− 1

2ma
2ω2 sin2 θ +mga(1 − cos θ) . (7.62)

For this problem, we can define the effective potential

Ueff(θ) ≡ U − T0 = mga(1 − cos θ)− 1
2ma

2ω2 sin2 θ

= mga
(

1 − cos θ − ω2

2ω2
0

sin2 θ
)

, (7.63)

where ω0 ≡ g/a2. The Lagrangian may then be written

L = 1
2ma

2θ̇2 − Ueff(θ) , (7.64)
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Figure 7.1: A bead of mass m on a rotating hoop of radius a.

and thus the equations of motion are

ma2θ̈ = −∂Ueff

∂θ
. (7.65)

Equilibrium is achieved when U ′

eff(θ) = 0, which gives

∂Ueff

∂θ
= mga sin θ

{

1 − ω2

ω2
0

cos θ
}

= 0 , (7.66)

i.e. θ∗ = 0, θ∗ = π, or θ∗ = ± cos−1(ω2
0/ω

2), where the last pair of equilibria are present
only for ω2 > ω2

0 . The stability of these equilibria is assessed by examining the sign of
U ′′

eff(θ∗). We have

U ′′

eff(θ) = mga
{

cos θ − ω2

ω2
0

(
2 cos2 θ − 1

)}

. (7.67)
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Figure 7.2: The effective potential Ueff(θ) = mga
[
1−cos θ− ω2

2ω2
0

sin2 θ
]
. (The dimensionless

potential Ũeff(x) = Ueff/mga is shown, where x = θ/π.) Left panels: ω = 1
2

√
3ω0. Right

panels: ω =
√

3ω0.

Thus,

U ′′

eff(θ∗) =







mga
(

1 − ω2

ω2
0

)

at θ∗ = 0

−mga
(

1 + ω2

ω2
0

)

at θ∗ = π

mga
(

ω2

ω2
0

− ω2
0

ω2

)

at θ∗ = ± cos−1
(

ω2
0

ω2

)

.

(7.68)

Thus, θ∗ = 0 is stable for ω2 < ω2
0 but becomes unstable when the rotation frequency ω

is sufficiently large, i.e. when ω2 > ω2
0 . In this regime, there are two new equilibria, at

θ∗ = ± cos−1(ω2
0/ω

2), which are both stable. The equilibrium at θ∗ = π is always unstable,
independent of the value of ω. The situation is depicted in Fig. 7.2.
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7.4 Charged Particle in a Magnetic Field

Consider next the case of a charged particle moving in the presence of an electromagnetic
field. The particle’s potential energy is

U(r) = q φ(r, t) − q

c
A(r, t) · ṙ , (7.69)

which is velocity-dependent. The kinetic energy is T = 1
2m ṙ2, as usual. Here φ(r) is the

scalar potential and A(r) the vector potential. The electric and magnetic fields are given
by

E = −∇φ− 1

c

∂A

∂t
, B = ∇ × A . (7.70)

The canonical momentum is

p =
∂L

∂ṙ
= m ṙ +

q

c
A , (7.71)

and hence the Hamiltonian is

H(r,p, t) = p · ṙ − L

= mṙ2 +
q

c
A · ṙ − 1

2m ṙ2 − q

c
A · ṙ + q φ

= 1
2m ṙ2 + q φ

=
1

2m

(

p − q

c
A(r, t)

)2
+ q φ(r, t) . (7.72)

If A and φ are time-independent, then H(r,p) is conserved.

Let’s work out the equations of motion. We have

d

dt

(

∂L

∂ṙ

)

=
∂L

∂r
(7.73)

which gives

m r̈ +
q

c

dA

dt
= −q∇φ+

q

c
∇(A · ṙ) , (7.74)

or, in component notation,

mẍi +
q

c

∂Ai

∂xj
ẋj +

q

c

∂Ai

∂t
= −q ∂φ

∂xi
+
q

c

∂Aj

∂xi
ẋj , (7.75)

which is to say

mẍi = −q ∂φ
∂xi

− q

c

∂Ai

∂t
+
q

c

(
∂Aj

∂xi
− ∂Ai

∂xj

)

ẋj . (7.76)

It is convenient to express the cross product in terms of the completely antisymmetric tensor
of rank three, ǫijk:

Bi = ǫijk
∂Ak

∂xj
, (7.77)
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and using the result
ǫijk ǫimn = δjm δkn − δjn δkm , (7.78)

we have ǫijk Bi = ∂j Ak − ∂k Aj , and

mẍi = −q ∂φ
∂xi

− q

c

∂Ai

∂t
+
q

c
ǫijk ẋj Bk , (7.79)

or, in vector notation,

m r̈ = −q∇φ− q

c

∂A

∂t
+
q

c
ṙ × (∇ × A)

= qE +
q

c
ṙ × B , (7.80)

which is, of course, the Lorentz force law.

7.5 Fast Perturbations : Rapidly Oscillating Fields

Consider a free particle moving under the influence of an oscillating force,

mq̈ = F sinωt . (7.81)

The motion of the system is then

q(t) = qh(t) −
F sinωt

mω2
, (7.82)

where qh(t) = A + Bt is the solution to the homogeneous (unforced) equation of motion.

Note that the amplitude of the response q − qh goes as ω−2 and is therefore small when ω
is large.

Now consider a general n = 1 system, with

H(q, p, t) = H0(q, p) + V (q) sin(ωt + δ) . (7.83)

We assume that ω is much greater than any natural oscillation frequency associated with
H0. We separate the motion q(t) and p(t) into slow and fast components:

q(t) = q̄(t) + ζ(t) (7.84)

p(t) = p̄(t) + π(t) , (7.85)

where ζ(t) and π(t) oscillate with the driving frequency ω. Since ζ and π will be small, we
expand Hamilton’s equations in these quantities:

˙̄q + ζ̇ =
∂H0

∂p̄
+
∂2H0

∂p̄2
π +

∂2H0

∂q̄ ∂p̄
ζ +

1

2

∂3H0

∂q̄2 ∂p̄
ζ2 +

∂3H0

∂q̄ ∂p̄2
ζπ +

1

2

∂3H0

∂p̄3
π2 + . . . (7.86)

˙̄p+ π̇ = −∂H0

∂q̄
− ∂2H0

∂q̄2
ζ − ∂2H0

∂q̄ ∂p̄
π − 1

2

∂3H0

∂q̄3
ζ2 − ∂3H0

∂q̄2 ∂p̄
ζπ − 1

2

∂3H0

∂q̄ ∂p̄2
π2

− ∂V

∂q̄
sin(ωt+ δ) − ∂2V

∂q̄2
ζ sin(ωt+ δ) − . . . . (7.87)
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We now average over the fast degrees of freedom to obtain an equation of motion for the slow
variables q̄ and p̄, which we here carry to lowest nontrivial order in averages of fluctuating
quantities:

˙̄q =
∂H0

∂p̄
+

1

2

∂3H0

∂q̄2 ∂p̄

〈
ζ2
〉

+
∂3H0

∂q̄ ∂p̄2

〈
ζπ
〉

+
1

2

∂3H0

∂p̄3

〈
π2
〉

(7.88)

˙̄p = −∂H0

∂q̄
− 1

2

∂3H0

∂q̄3
〈
ζ2
〉
− ∂3H0

∂q̄2 ∂p̄

〈
ζπ
〉
− 1

2

∂3H0

∂q̄ ∂p̄2

〈
π2
〉
− ∂2V

∂q̄2
〈
ζ sin(ωt+ δ)

〉
. (7.89)

The fast degrees of freedom obey

ζ̇ =
∂2H0

∂q̄ ∂p̄
ζ +

∂2H0

∂p̄2
π (7.90)

π̇ = −∂
2H0

∂q̄2
ζ − ∂2H0

∂q̄ ∂p̄
π − ∂V

∂q
sin(ωt+ δ) . (7.91)

Let us analyze the coupled equations3

ζ̇ = Aζ +B π (7.92)

π̇ = −C ζ −Aπ + F e−iωt . (7.93)

The solution is of the form (
ζ
π

)

=

(
α
β

)

e−iωt . (7.94)

Plugging in, we find

α =
BF

BC −A2 − ω2
= −BF

ω2
+ O

(
ω−4

)
(7.95)

β = − (A+ iω)F

BC −A2 − ω2
=
iF

ω
+ O

(
ω−3

)
. (7.96)

Taking the real part, and restoring the phase shift δ, we have

ζ(t) =
−BF
ω2

sin(ωt+ δ) =
1

ω2

∂V

∂q̄

∂2H0

∂p̄2
sin(ωt+ δ) (7.97)

π(t) = −F
ω

cos(ωt+ δ) =
1

ω

∂V

∂q̄
cos(ωt+ δ) . (7.98)

The desired averages, to lowest order, are thus

〈
ζ2
〉

=
1

2ω4

(
∂V

∂q̄

)2(∂2H0

∂p̄2

)2

(7.99)

〈
π2
〉

=
1

2ω2

(
∂V

∂q̄

)2

(7.100)

〈
ζ sin(ωt + δ)

〉
=

1

2ω2

∂V

∂q̄

∂2H0

∂p̄2
, (7.101)

3With real coefficients A, B, and C, one can always take the real part to recover the fast variable equations
of motion.
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along with
〈
ζπ
〉

= 0.

Finally, we substitute the averages into the equations of motion for the slow variables q̄ and
p̄, resulting in the time-independent effective Hamiltonian

K(q̄, p̄) = H0(q̄, p̄) +
1

4ω2

∂2H0

∂p̄2

(
∂V

∂q̄

)2

, (7.102)

and the equations of motion

˙̄q =
∂K

∂p̄
, ˙̄p = −∂K

∂q̄
. (7.103)

7.5.1 Example : pendulum with oscillating support

Consider a pendulum with a vertically oscillating point of support. The coordinates of the
pendulum bob are

x = ℓ sin θ , y = a(t) − ℓ cos θ . (7.104)

The Lagrangian is easily obtained:

L = 1
2mℓ

2 θ̇2 +mℓȧ θ̇ sin θ +mgℓ cos θ + 1
2mȧ

2 −mga (7.105)

= 1
2mℓ

2 θ̇2 +m(g + ä)ℓ cos θ+

these may be dropped
︷ ︸︸ ︷

1
2mȧ

2 −mga− d

dt

(
mℓȧ sin θ

)
. (7.106)

Thus we may take the Lagrangian to be

L̄ = 1
2mℓ

2 θ̇2 +m(g + ä)ℓ cos θ , (7.107)

from which we derive the Hamiltonian

H(θ, pθ, t) =
p2

θ

2mℓ2
−mgℓ cos θ −mℓä cos θ (7.108)

= H0(θ, pθ, t) + V1(θ) sinωt . (7.109)

We have assumed a(t) = a0 sinωt, so

V1(θ) = mℓa0 ω
2 cos θ . (7.110)

The effective Hamiltonian, per eqn. 7.102, is

K(θ̄, p̄θ) =
p̄θ

2mℓ2
−mgℓ cos θ̄ + 1

4ma2
0 ω

2 sin2 θ̄ . (7.111)

Let’s define the dimensionless parameter

ǫ ≡ 2gℓ

ω2a2
0

. (7.112)
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Figure 7.3: Dimensionless potential v(θ) for ǫ = 1.5 (black curve) and ǫ = 0.5 (blue curve).

The slow variable θ̄ executes motion in the effective potential Veff(θ̄) = mgℓ v(θ̄), with

v(θ̄) = − cos θ̄ +
1

2ǫ
sin2 θ̄ . (7.113)

Differentiating, and dropping the bar on θ, we find that Veff(θ) is stationary when

v′(θ) = 0 ⇒ sin θ cos θ = −ǫ sin θ . (7.114)

Thus, θ = 0 and θ = π, where sin θ = 0, are equilibria. When ǫ < 1 (note ǫ > 0 always),
there are two new solutions, given by the roots of cos θ = −ǫ.

To assess stability of these equilibria, we compute the second derivative:

v′′(θ) = cos θ +
1

ǫ
cos 2θ . (7.115)

From this, we see that θ = 0 is stable (i.e. v′′(θ = 0) > 0) always, but θ = π is stable for
ǫ < 1 and unstable for ǫ > 1. When ǫ < 1, two new solutions appear, at cos θ = −ǫ, for
which

v′′(cos−1(−ǫ)) = ǫ− 1

ǫ
, (7.116)

which is always negative since ǫ < 1 in order for these equilibria to exist. The situation is
sketched in fig. 7.3, showing v(θ) for two representative values of the parameter ǫ. For ǫ > 1,
the equilibrium at θ = π is unstable, but as ǫ decreases, a subcritical pitchfork bifurcation is
encountered at ǫ = 1, and θ = π becomes stable, while the outlying θ = cos−1(−ǫ) solutions
are unstable.
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7.6 Field Theory: Systems with Several Independent Vari-

ables

Suppose φa(x) depends on several independent variables: {x1, x2, . . . , xn}. Furthermore,
suppose

S
[
{φa(x)

]
=

∫

Ω

dxL(φa ∂µφa,x) , (7.117)

i.e. the Lagrangian density L is a function of the fields φa and their partial derivatives
∂φa/∂xµ. Here Ω is a region in RK . Then the first variation of S is

δS =

∫

Ω

dx

{

∂L
∂φa

δφa +
∂L

∂(∂µφa)

∂ δφa

∂xµ

}

=

∮

∂Ω

dΣ nµ ∂L
∂(∂µφa)

δφa −
∫

Ω

dx

{

∂L
∂φa

− ∂

∂xµ

(
∂L

∂(∂µφa)

)}

δφa , (7.118)

where ∂Ω is the (n− 1)-dimensional boundary of Ω, dΣ is the differential surface area, and

nµ is the unit normal. If we demand ∂L/∂(∂µφa)
∣
∣
∂Ω

= 0 of δφa

∣
∣
∂Ω

= 0, the surface term
vanishes, and we conclude

δS

δφa(x)
=

∂L
∂φa

− ∂

∂xµ

(
∂L

∂(∂µφa)

)

. (7.119)

As an example, consider the case of a stretched string of linear mass density µ and tension
τ . The action is a functional of the height y(x, t), where the coordinate along the string, x,
and time, t, are the two independent variables. The Lagrangian density is

L = 1
2µ

(
∂y

∂t

)2

− 1
2τ

(
∂y

∂x

)2

, (7.120)

whence the Euler-Lagrange equations are

0 =
δS

δy(x, t)
= − ∂

∂x

(
∂L
∂y′

)

− ∂

∂t

(
∂L
∂ẏ

)

= τ
∂2y

∂x2
− µ

∂2y

∂t2
, (7.121)

where y′ = ∂y
∂x

and ẏ = ∂y
∂t

. Thus, µÿ = τy′′, which is the Helmholtz equation. We’ve

assumed boundary conditions where δy(xa, t) = δy(xb, t) = δy(x, ta) = δy(x, tb) = 0.

The Lagrangian density for an electromagnetic field with sources is

L = − 1
16π

Fµν F
µν − 1

c
jµA

µ . (7.122)
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The equations of motion are then

∂L
∂Aν

− ∂

∂xν

(
∂L

∂(∂µAν)

)

= 0 ⇒ ∂µ F
µν =

4π

c
jν , (7.123)

which are Maxwell’s equations.

Recall the result of Noether’s theorem for mechanical systems:

d

dt

(

∂L

∂q̇σ

∂q̃σ
∂ζ

)

ζ=0

= 0 , (7.124)

where q̃σ = q̃σ(q, ζ) is a one-parameter (ζ) family of transformations of the generalized
coordinates which leaves L invariant. We generalize to field theory by replacing

qσ(t) −→ φa(x, t) , (7.125)

where {φa(x, t)} are a set of fields, which are functions of the independent variables {x, y, z, t}.
We will adopt covariant relativistic notation and write for four-vector xµ = (ct, x, y, z). The
generalization of dΛ/dt = 0 is

∂

∂xµ

(

∂L
∂ (∂µφa)

∂φ̃a

∂ζ

)

ζ=0

= 0 , (7.126)

where there is an implied sum on both µ and a. We can write this as ∂µ J
µ = 0, where

Jµ ≡ ∂L
∂ (∂µφa)

∂φ̃a

∂ζ

∣
∣
∣
∣
∣
ζ=0

. (7.127)

We call Λ = J0/c the total charge. If we assume J = 0 at the spatial boundaries of our
system, then integrating the conservation law ∂µ J

µ over the spatial region Ω gives

dΛ

dt
=

∫

Ω

d3x ∂0 J
0 = −

∫

Ω

d3x∇ · J = −
∮

∂Ω

dΣ n̂ · J = 0 , (7.128)

assuming J = 0 at the boundary ∂Ω.

As an example, consider the case of a complex scalar field, with Lagrangian density4

L(ψ, , ψ∗, ∂µψ, ∂µψ
∗) = 1

2K (∂µψ
∗)(∂µψ) − U

(
ψ∗ψ

)
. (7.129)

This is invariant under the transformation ψ → eiζ ψ, ψ∗ → e−iζ ψ∗. Thus,

∂ψ̃

∂ζ
= i eiζ ψ ,

∂ψ̃∗

∂ζ
= −i e−iζ ψ∗ , (7.130)

4We raise and lower indices using the Minkowski metric gµν = diag (+,−,−,−).
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and, summing over both ψ and ψ∗ fields, we have

Jµ =
∂L

∂ (∂µψ)
· (iψ) +

∂L
∂ (∂µψ∗)

· (−iψ∗)

=
K

2i

(
ψ∗∂µψ − ψ ∂µψ∗

)
. (7.131)

The potential, which depends on |ψ|2, is independent of ζ. Hence, this form of conserved
4-current is valid for an entire class of potentials.

7.6.1 Gross-Pitaevskii model

As one final example of a field theory, consider the Gross-Pitaevskii model, with

L = i~ψ∗
∂ψ

∂t
− ~

2

2m
∇ψ∗ · ∇ψ − g

(
|ψ|2 − n0

)2
. (7.132)

This describes a Bose fluid with repulsive short-ranged interactions. Here ψ(x, t) is again
a complex scalar field, and ψ∗ is its complex conjugate. Using the Leibniz rule, we have

δS[ψ∗, ψ] = S[ψ∗ + δψ∗, ψ + δψ]

=

∫

dt

∫

ddx

{

i~ψ∗
∂δψ

∂t
+ i~ δψ∗

∂ψ

∂t
− ~

2

2m
∇ψ∗ · ∇δψ − ~

2

2m
∇δψ∗ · ∇ψ

− 2g
(
|ψ|2 − n0

)
(ψ∗δψ + ψδψ∗)

}

=

∫

dt

∫

ddx

{[

− i~
∂ψ∗

∂t
+

~
2

2m
∇2ψ∗ − 2g

(
|ψ|2 − n0

)
ψ∗

]

δψ

+

[

i~
∂ψ

∂t
+

~
2

2m
∇2ψ − 2g

(
|ψ|2 − n0

)
ψ

]

δψ∗

}

, (7.133)

where we have integrated by parts where necessary and discarded the boundary terms.
Extremizing S[ψ∗, ψ] therefore results in the nonlinear Schrödinger equation (NLSE),

i~
∂ψ

∂t
= − ~

2

2m
∇2ψ + 2g

(
|ψ|2 − n0

)
ψ (7.134)

as well as its complex conjugate,

−i~ ∂ψ
∗

∂t
= − ~

2

2m
∇2ψ∗ + 2g

(
|ψ|2 − n0

)
ψ∗ . (7.135)

Note that these equations are indeed the Euler-Lagrange equations:

δS

δψ
=
∂L
∂ψ

− ∂

∂xµ

(
∂L
∂ ∂µψ

)

(7.136)

δS

δψ∗
=

∂L
∂ψ∗

− ∂

∂xµ

(
∂L

∂ ∂µψ∗

)

, (7.137)
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with xµ = (t,x)5 Plugging in

∂L
∂ψ

= −2g
(
|ψ|2 − n0

)
ψ∗ ,

∂L
∂ ∂tψ

= i~ψ∗ ,
∂L
∂∇ψ

= − ~
2

2m
∇ψ∗ (7.138)

and

∂L
∂ψ∗

= i~ψ − 2g
(
|ψ|2 − n0

)
ψ ,

∂L
∂ ∂tψ∗

= 0 ,
∂L

∂∇ψ∗
= − ~

2

2m
∇ψ , (7.139)

we recover the NLSE and its conjugate.

The Gross-Pitaevskii model also possesses a U(1) invariance, under

ψ(x, t) → ψ̃(x, t) = eiζ ψ(x, t) , ψ∗(x, t) → ψ̃∗(x, t) = e−iζ ψ∗(x, t) . (7.140)

Thus, the conserved Noether current is then

Jµ =
∂L
∂ ∂µψ

∂ψ̃

∂ζ

∣
∣
∣
∣
∣
ζ=0

+
∂L

∂ ∂µψ∗

∂ψ̃∗

∂ζ

∣
∣
∣
∣
∣
ζ=0

J0 = −~ |ψ|2 (7.141)

J = − ~
2

2im

(
ψ∗

∇ψ − ψ∇ψ∗
)
. (7.142)

Dividing out by ~, taking J0 ≡ −~ρ and J ≡ −~j, we obtain the continuity equation,

∂ρ

∂t
+ ∇ · j = 0 , (7.143)

where

ρ = |ψ|2 , j =
~

2im

(
ψ∗

∇ψ − ψ∇ψ∗
)
. (7.144)

are the particle density and the particle current, respectively.

5In the nonrelativistic case, there is no utility in defining x0 = ct, so we simply define x0 = t.


