PHYSICS 200A : CLASSICAL MECHANICS PROBLEM SET \#6

[1] Evaluate all cases of $\left\{A_{i}, A_{j}\right\}$, where

$$
\begin{array}{ll}
A_{1}=\frac{1}{4}\left(x^{2}+p_{x}^{2}-y^{2}-p_{y}^{2}\right) & A_{3}=\frac{1}{2}\left(x p_{y}-y p_{x}\right) \\
A_{2}=\frac{1}{2}\left(x y+p_{x} p_{y}\right) & A_{4}=x^{2}+y^{2}+p_{x}^{2}+p_{y}^{2} .
\end{array}
$$

[2] Determine the generating function $F_{3}(p, Q)$ which produces the same canonical transformation as the generating function $F_{2}(q, P)=q^{2} \exp (P)$.
[3] Show explicitly that the canonical transformation generated by an arbitrary $F_{1}(q, Q, t)$ preserves the symplectic structure of Hamilton's equations. That is, show that

$$
M_{a j} \equiv \frac{\partial \Xi_{a}}{\partial \xi_{j}}
$$

is symplectic. Hint : Start by writing $p_{\sigma}=\frac{\partial F_{1}}{\partial q_{\sigma}}$ and $P_{\sigma}=-\frac{\partial F_{1}}{\partial Q_{\sigma}}$, and then evaluate the differentials $d p_{\sigma}$ and $d P_{\sigma}$.
[4] Consider the small oscillations of an anharmonic oscillator with Hamiltonian

$$
H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} q^{2}+\alpha q^{3}+\beta q p^{2}
$$

under the assumptions $\alpha q \ll m \omega^{2}$ and $\beta q \ll \frac{1}{m}$.
(a) Working with the generating function

$$
F_{2}(q, P)=q P+a q^{2} P+b P^{3},
$$

find the parameters a and b such that the new Hamiltonian $\tilde{H}(Q, P)$ does not contain any anharmonic terms up to third order (i.e. no terms of order Q^{3} nor of order $Q P^{2}$).
(b) Determine $q(t)$.
[5] A particle of mass m moves in one dimension subject to the potential

$$
U(x)=\frac{k}{\sin ^{2}(x / a)} .
$$

(a) Obtain an integral expression for Hamilton's characteristic function.
(b) Under what conditions may action-angle variables be used?
(c) Assuming that action-angle variables are permissible, determine the frequency of oscillation by the action-angle method.
(d) Check your result for the oscillation frequency in the limit of small oscillations.

