PHYSICS 200A : CLASSICAL MECHANICS PROBLEM SET #5

[1] The figure below shows a string with an attached mass m. The mass point is connected to springs above and below with spring constant κ . In equilibrium, both springs are unstretched. An right-moving disturbance f(ct - x) is incident from the far left. For x < 0 a left-moving reflected component, g(ct + x) also propagates, while for x > 0 there is only a right-moving transmitted component h(ct - x), as depicted in the figure below.

Figure 1: A string with a mass point connected to springs. An incident wave gives rise to reflected and transmitted components.

(a) Define

$$h(\xi) = \int_{-\infty}^{\infty} d\xi' \, \mathcal{T}(\xi - \xi') \, f(\xi')$$

Compute and sketch the kernel $\mathcal{T}(s)$. You may find it convenient to define the quantities $Q \equiv \sigma/m$ and $P \equiv \sqrt{2\kappa\sigma/m\tau}$, both of which have dimension of inverse length. How do the cases Q < P and Q > P differ?

(b) Suppose a square pulse is incident, *i.e.*

$$f(\xi) = b \Theta(a - |x|) ,$$

where $\Theta(s)$ is the step function. Derive expressions for the transmitted wave $h(\xi)$ and the reflected wave $g(\xi)$. Plot $f(\xi)$, $g(\xi)$, and $g(\xi)$ versus ξ . Choose interesting values of the dimensionless quantities Qa and Pa.

[2] A string of uniform mass density and length ℓ hangs under its own weight in the earth's gravitational field. Consider small transverse displacements u(x,t) in a plane.

(a) Compute the equilibrium tension in the string $\tau(x)$, where x is the distance from the point of suspension.

- (b) Show that the normal modes satisfy Bessel's equation.
- (c) What are the boundary conditions?

(d) What are the normal mode frequencies?

(e) What are the normal modes?

(f) Construct the general solution to the initial value problem.

[3] A string of length 2a is stretched to a constant tension τ with its ends fixed. The mass density of the string is given by

$$\sigma(x) = \sigma_0 \left(1 - \frac{|x|}{a} \right) \,.$$

(a) Use a zero-parameter trial function to derive a variational estimate of the lowest resonant frequency ω_1 . Compare with the numerical value $\omega_1^2 \approx 3.477 \, \tau/a^2 \sigma_0$.

(b) Devise a one-parameter trial function and show that it leads to a better (e.g. lower frequency) estimate.

(c) Repeat part (a) for the next eigenfrequency ω_2 , whose numerical value is $\omega_2^2 \approx 18.956 \tau/a^2 \sigma_0$.

[4] A wave travels along an infinite string stretched to a tension τ . The mass density of the string is σ_0 for |x| > a and σ_1 for |x| < a.

(a) Solve the wave equation in the regions |x| > a and |x| < a, respectively, to find exact expressions for the transmission and reflection amplitudes.

(b) Show that the energy transmission coefficient is given by

$$T = 1 - R = \left\{ 1 + \left(\frac{k_1^2 - k_0^2}{2k_0k_1}\right)^2 \sin^2(2k_1a) \right\}^{-1},$$

where $k_i = \sqrt{\sigma_i/\tau} \,\omega = \omega/c_i$. Discuss the frequency dependence of T, noting the position and widths of the transmission resonances (where T = 1).

[5] Consider a uniform circular membrane of radius a, areal mass density σ , and tension τ .

(a) A point mass m is attached at the center of the membrane. Show that the total density is now

$$\sigma(r,\phi) = \sigma + \frac{m}{\pi r} \delta(r) \; .$$

(b) Use first-order perturbation theory to show that only the circularly symmetric modes are affected by the point mass, in which case

$$k^2 a^2 = x_{0,n}^2 \left\{ 1 - \frac{m}{\pi \sigma a^2 J_1^2(x_{0,n})} \right\} ,$$

where $J_{\nu}(x_{\nu,n}) = 0$, *i.e.* $x_{\nu,n}$ is the n^{th} root of $J_{\nu}(x)$. Discuss the behavior for large n and compare to the corresponding case of a point mass on a string.