
PHYSICS 200A : CLASSICAL MECHANICS
PROBLEM SET #5

[1] The figure below shows a string with an attached mass m. The mass point is connected
to springs above and below with spring constant κ. In equilibrium, both springs are un-
stretched. An right-moving disturbance f(ct − x) is incident from the far left. For x < 0 a
left-moving reflected component, g(ct + x) also propagates, while for x > 0 there is only a
right-moving transmitted component h(ct − x), as depicted in the figure below.

Figure 1: A string with a mass point connected to springs. An incident wave gives rise to
reflected and transmitted components.

(a) Define

h(ξ) =

∞
∫

−∞

dξ′ T (ξ − ξ′) f(ξ′) .

Compute and sketch the kernel T (s). You may find it convenient to define the quantities
Q ≡ σ/m and P ≡

√

2κσ/mτ , both of which have dimension of inverse length. How do the
cases Q < P and Q > P differ?

(b) Suppose a square pulse is incident, i.e.

f(ξ) = bΘ
(

a − |x|
)

,

where Θ(s) is the step function. Derive expressions for the transmitted wave h(ξ) and the
reflected wave g(ξ). Plot f(ξ), g(ξ), and g(ξ) versus ξ. Choose interesting values of the
dimensionless quantities Qa and Pa.

[2] A string of uniform mass density and length ℓ hangs under its own weight in the earth’s
gravitational field. Consider small transverse displacements u(x, t) in a plane.

(a) Compute the equilibrium tension in the string τ(x), where x is the distance from the
point of suspension.

(b) Show that the normal modes satisfy Bessel’s equation.

(c) What are the boundary conditions?
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(d) What are the normal mode frequencies?

(e) What are the normal modes?

(f) Construct the general solution to the initial value problem.

[3] A string of length 2a is stretched to a constant tension τ with its ends fixed. The mass
density of the string is given by

σ(x) = σ
0

(

1 −
|x|

a

)

.

(a) Use a zero-parameter trial function to derive a variational estimate of the lowest reso-
nant frequency ω

1
. Compare with the numerical value ω2

1
≈ 3.477 τ/a2σ

0
.

(b) Devise a one-parameter trial function and show that it leads to a better (e.g. lower
frequency) estimate.

(c) Repeat part (a) for the next eigenfrequency ω
2
, whose numerical value is ω2

2
≈

18.956 τ/a2σ
0
.

[4] A wave travels along an infinite string stretched to a tension τ . The mass density of the

string is σ
0

for |x| > a and σ
1

for |x| < a.

(a) Solve the wave equation in the regions |x| > a and |x| < a, respectively, to find exact
expressions for the transmission and reflection amplitudes.

(b) Show that the energy transmission coefficient is given by

T = 1 − R =

{

1 +

(

k2

1
− k2

0

2k0k1

)

2

sin2(2k
1
a)

}

−1

,

where ki =
√

σi/τ ω = ω/ci. Discuss the frequency dependence of T , noting the position
and widths of the transmission resonances (where T = 1).

[5] Consider a uniform circular membrane of radius a, areal mass density σ, and tension τ .

(a) A point mass m is attached at the center of the membrane. Show that the total density
is now

σ(r, φ) = σ +
m

πr
δ(r) .
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(b) Use first-order perturbation theory to show that only the circularly symmetric modes
are affected by the point mass, in which case

k2a2 = x2

0,n

{

1 −
m

πσa2J2

1
(x

0,n)

}

,

where Jν(xν,n) = 0, i.e. xν,n is the nth root of Jν(x). Discuss the behavior for large n and
compare to the corresponding case of a point mass on a string.
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